• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Unraveling the mechanisms that create the individualized metabolism in leukemia

Bioengineer by Bioengineer
July 6, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Associate Professor Shinjiro Hino

A research collaboration based in Kumamoto University (Japan) has shown that lysine-specific demethylase 1 (LSD1), an enzyme involved in gene expression, produces individualized metabolism depending on the type of acute myeloid leukemia cells. Cancer cells are known to have a unique ability to metabolize substances differently from normal cells, and this ability is considered to be a promising therapeutic target. The new research findings may contribute to the safe and effective use of LSD1 inhibitors as potential anticancer agents, and to the development of highly specific treatments for various leukemia types.

Acute myelogenous leukemia (AML) occurs when hematopoietic stem cells become tumors rather than differentiating into white or red blood cells. The various types of AML develop according to which stage of differentiation they become cancerous. Those that develop when differentiating into red blood cells are classified as erythroblastic leukemia (EL). Although pathology-specific targeted molecular therapies have been developed for some forms of AML, and have improved treatment outcomes, many forms of the disease, including EL, have high mortality rates due to the lack of individualized therapies. Thus, therapies based on disease type and molecular pathology are desired.

Recent studies have revealed that the inherent metabolic capacity of cancer cells contributes significantly to tumor formation, metastasis and resistance to treatment. Therefore, therapeutic strategies that target nutrient transport and metabolic pathways active in cancer cells have been devised, but it has also been pointed out that metabolic characteristics vary depending on the type and progression of cancer. The metabolic characteristics of AML have not been fully investigated and, in particular, the differences that depend on the disease type and their mechanisms have not been clarified.

Gene expression is regulated by the epigenome. Chemical modifications, such as DNA methylation and methylation of the histone proteins around which the DNA wraps, act as markers to shape the epigenome. There are many differences in the epigenome between cancer cells and normal cells, which in turn generate the differences in gene expression patterns.

Previously, the Kumamoto University research collaboration showed that LSD1, a demethylase that removes methyl groups from methylated histones, is involved in the regulation of energy metabolism in various cell types (Nature Communications 2012, Cancer Research 2015, Nucleic Acids Research 2018). Therefore, they decided to test the possibility that LSD1 is involved in the metabolic regulation of AML cells. Although it has been shown that LSD1 inhibitors may be effective in the treatment of AML, not much is known about the differences in efficacy depending on the disease type. Thus, in this study, the researchers decided to focus on the metabolic differences depending on AML disease type and the role of LSD1.

They first analyzed the gene expression database of AML patients and AML-derived cultured cell lines, and found that both LSD1 and glycolytic genes are highly expressed in EL among AML patients. Then, when they tested the inhibition of LSD1 function using EL cell lines, they found that LSD1 promoted glucose uptake into cells and the glycolytic system. An integrated omics analysis revealed that heme synthesis, a characteristic metabolic pathway of normal red blood cells, is also activated by LSD1. The mechanism was found to be that LSD1 activates glycolytic and heme synthesis gene expression by preventing the degradation of GATA1 protein, an erythroid transcription factor.

Furthermore, under LSD1 functional inhibition, the expression of CEBP/α, a transcription factor of the granulocyte-monocyte lineage of leukocytes, was dramatically up-regulated, inhibiting metabolic regulation by GATA1. These results indicate that LSD1 regulates the balance of transcription factors involved in hematopoietic cell lineage, thereby generating the metabolic phenotype characteristic of EL. Additionally, analysis of clinical data covering various forms of AML showed that the expression of LSD1, GATA1, and glycolytic and heme synthesis genes showed a significant positive correlation. This suggests that regulation of cellular lineage by LSD1 may generate the diversity of metabolic types of AML.

“Based on our research, a combination of LSD1 inhibitors, metabolic target drugs, and conventional therapies may be highly effective in treating patients with EL who express high levels of LSD1,” said Associate Professor Shinjiro Hino, who led the study. “It may also be an important clue for selecting patients who may benefit from LSD1 inhibitors in clinical trials.”

###

This research was posted online in Blood Advances on 30 April 2021.

Source: Kohrogi, K., Hino, S., Sakamoto, A., Anan, K., Takase, R., Araki, H., … Nakao, M. (2021). LSD1 defines erythroleukemia metabolism by controlling the lineage-specific transcription factors GATA1 and C/EBPα. Blood Advances, 5(9), 2305-2318. doi:10.1182/bloodadvances.2020003521

Media Contact
J. Sanderson & N. Fukuda
[email protected]

Original Source

https://ewww.kumamoto-u.ac.jp/en/news/467/

Related Journal Article

http://dx.doi.org/10.1182/bloodadvances.2020003521

Tags: cancerCell BiologyGeneticsHematologyInternal MedicineMedicine/HealthMetabolism/Metabolic DiseasesPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Genes responsible for coronary artery disease, world’s No. 1 killer, identified

Genes responsible for coronary artery disease, world’s No. 1 killer, identified

February 2, 2023
Eva Koekenbier vaccinates a participant in the BCG-PRIME study

Tuberculosis vaccine does not protect elderly against COVID-19

February 2, 2023

Urinary tract infections impair the sex life, sleep and exercise of over half of women who experience them, and are associated with reduced quality of life, in U.S. survey

February 1, 2023

Vitamin D supplementation is associated with a reduced risk of suicide attempts in a large cohort of U.S. veterans, especially in Black veterans and those with pre-existing low vitamin D

February 1, 2023
Please login to join discussion

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How do you create buildings that can withstand the most extreme stress loads?

Genes responsible for coronary artery disease, world’s No. 1 killer, identified

Tuberculosis vaccine does not protect elderly against COVID-19

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In