• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, April 17, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Unfavorable weather conditions were the main cause of the fog-haze events over the Beijing-Tianjin-Hebei region during the COVID-19 lockdown

Bioengineer by Bioengineer
March 10, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: GAO Yi

At the end of December 2019, Coronavirus Disease 2019 (COVID-19) quickly spread throughout Hubei Province and other parts of China. During the 2020 Spring Festival, public activities were cancelled, people tried their best to stay at home, and human and industrial activities were reduced to a basic or minimum level. However, during this period, severe fog-haze events occurred over the North China Plain. What was the leading factor that caused these severe smog incidents? And what were the individual impacts of meteorological conditions and emission reductions?

To evaluate the impacts of meteorological conditions and emission reduction measures on the near-surface PM2.5 (fine particulate matter) during the COVID-19 lockdown, three numerical experiments with different meteorological fields and emission sources were carried out with a coupled meteorology and aerosol/chemistry model (WRF-Chem) by Professor Zhang Meigen and his team from the Institute of Atmospheric Physics, Chinese Academy of Sciences, and the findings have recently been published in Atmospheric and Oceanic Science Letters.

The results of the study found that, compared with the same period in 2019, the PM2.5 concentration in the Beijing-Tianjin-Hebei region increased by 50-70 μg m?3 from 7 to 14 February 2020, during which time the daily average PM2.5 concentration in Beijing reached 175 μg m?3. Results from sensitivity tests showed that the main cause was that the increase in PM2.5 caused by meteorological conditions was greater than the decrease in PM2.5 caused by emission reductions.

“Higher temperatures and relative humidity usually hasten the formation of secondary aerosols by accelerating chemical reactions”, explains Prof. Zhang. “Meanwhile, the lower wind speed in the Beijing-Tianjin-Hebei region inhibits the diffusion of air pollutants and the lower planetary boundary layer height enhances atmospheric stability. These unfavorable meteorological conditions led to these haze events in the Beijing-Tianjin-Hebei region.”

Therefore, it is necessary to consider meteorological conditions when assessing the effectiveness of emission control policies on changes in air pollutants. Doing so is likely to be very helpful for the formulation of future air pollution reduction policies.

###

Media Contact
Ms. LIN Zheng
[email protected]

Original Source

http://aosl.iapjournals.ac.cn/EN/news/news128.shtml

Related Journal Article

http://dx.doi.org/10.1016/j.aosl.2020.100014

Tags: Atmospheric ChemistryAtmospheric ScienceClimate ChangePollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

University of Colorado inter-campus collaboration wins R01 award for salivary gland cancer

April 16, 2021
IMAGE

New understanding of the deleterious immune response in rheumatoid arthritis

April 16, 2021

Scientists call for climate projections as part of more robust biodiversity conservation

April 16, 2021

Quality and quantity of enrichments influence well-being of aquaculture fishes

April 16, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVaccineWeather/StormsVirusVirologyWeaponryVaccinesUrbanizationVehiclesUrogenital SystemZoology/Veterinary ScienceViolence/Criminals

Recent Posts

  • New amphibious centipede species discovered in Okinawa and Taiwan
  • USU researchers develop power converter for long-distance, underwater electric grids
  • The fate of the planet
  • The future of particle accelerators is here
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In