• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Uncovering the science of Indigenous fermentation

Bioengineer by Bioengineer
September 11, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Adelaide AWRI

Australian wine scientists are shedding scientific light on the processes underlying traditional practices of Australian Aboriginal people to produce fermented beverages.

The scientists from the University of Adelaide and the Australian Wine Research Institute (AWRI) have discovered the complex microbial communities associated with the natural fermentation of sap from the iconic Tasmanian cider gum, Eucalyptus gunnii. The work has been published in the Nature journal Scientific Reports.

The much-loved, but locally endangered, cider gum is native to the remote Central Plateau of Tasmania and also commonly planted as an ornamental tree across the British Isles and some parts of Western Europe.

“Cider gums produce a sweet sap that was collected by Aboriginal people to produce a mildly alcoholic beverage,” says lead author Dr Cristian Varela, Principal Research Scientist with the AWRI.

“The drink known as way-a-linah was made by the Tasmanian Palawa people in a traditional practice where the sap was given time to spontaneously ferment.

“To the best of our knowledge, the microorganisms responsible for this traditional Australian fermentation have never been investigated or identified.”

The wine scientists, in collaboration with the Tasmanian Aboriginal Centre and the Tasmanian Land Conservancy, collected sap, bark and soil samples from around the cider gums in three locations in the Tasmanian Central Plateau.

They used DNA sequencing to identify the bacterial and fungal communities they found. Some could not be matched to existing databases, suggesting they represent completely new classifications of bacteria and fungi, not previously described.

Research leader Professor Vladimir Jiranek, Professor of Oenology with the University’s School of Agriculture, Food and Wine, says: “The wider community is not typically aware of these historic traditions. This work shines a light on these practices and the cultural significance of these unique fermentations.

“It also allows us to identify new strains, or species, of yeast and bacteria from the fermentations that are unique to Australia. Further work will characterise single microorganisms that have been isolated and grown from the cider gum.

“We are particularly interested in their fermentative abilities, their potential flavour impacts, how they’ve adapted to the cider gum environment and the possible symbiotic relationship they have with the trees.

“We look forward to continuing our work with relevant Aboriginal communities in order to understand these and other processes, and help revive lost practices or perhaps develop new ones from these.”

###

Media Contacts:

Professor Vladimir Jiranek, School of Agriculture, Food and Wine, The University of Adelaide. Mobile: +61 (0)414 775 418, Email: [email protected]

Ella Robinson, Communication Manager, The Australian Wine Research Institute. Mobile: +61 (0)402 402 121, Email: [email protected]

Robyn Mills, Senior Media and Communications Officer, The University of Adelaide. Mobile: +61 (0)410 689 084, Email: [email protected]

Media Contact
Vladimir Jiranek
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-71663-x

Tags: AgricultureAnthropologyBacteriologyBiochemistryBiologyEcology/EnvironmentFood/Food ScienceForestryMicrobiologyMycology
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hydrocolloids Boost Orally Disintegrating Film Performance

Muscle Bursting Signals Impulse Control Issues in Parkinson’s

Racial Gaps in Cardiovascular Risk Control in Obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.