• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Uncovering the nitty-gritty details of surface tension and flow behavior

Bioengineer by Bioengineer
July 29, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pitt Professor receives $292K from NSF to investigate the micromechanics of surface tension

IMAGE

Credit: University of Pittsburgh

Dry sand can be poured out of a bucket almost like a liquid; if you try to build a sandcastle with dry sand, you won’t have much luck. However, if you add just a little bit of water, everything about the sand’s behavior changes: It cannot be poured like a liquid and, instead, holds together well enough to build something.

That difference is an example of how surface tension affects flow behavior, an element that is crucial in a variety of physical processes that involve mixing together liquid and solid particles. Sachin Velankar, professor of chemical and petroleum engineering at the University of Pittsburgh’s Swanson School of Engineering, received $291,968 from the National Science Foundation for his collaborative research that seeks to better understand these phenomena. Velankar holds a secondary appointment in the Department of Mechanical Engineering and Materials Science.

“Dry sand is really a mix of sand particles and air. The reason wet sand behaves so differently from dry sand is that water wants to wet the sand particles more than air does,” explained Velankar. “If you take the wet sand and look under microscope, you’ll see that between each pair of sand particles is a ring of water – a meniscus -sticking them together. That’s why the wet sand can’t be poured: the granules just won’t separate easily. We want to understand how such wet particles separate under flow.”

Velankar will partner with Charles Schroeder, professor of chemical and biomolecular engineering at the University of Illinois – Urbana-Champaign, on the project. The two will not be looking at sand, however. Instead, they will use state-of-the-art technology to manipulate microscopic particles suspended in fluid to study their behavior, the conditions that bind them together and the force necessary to break them apart.

“I’ve been working in this area for more than 10 years and thought about questions of micromechanics for a long time but didn’t know how to approach it,” said Velankar. “It’s hard to manipulate particles precisely at this scale. That’s where the collaboration comes in.”

Schroeder’s method involves a small microfluidic device, called a Stokes trap, with strategically placed channels for incoming and outgoing liquid streams. The particles, suspended in the chamber, are manipulated as liquid flows through the different channels.

The research will provide a fundamental understanding of the dynamics and rupture of particle clusters in well-defined flows. Understanding the micromechanics of this phenomenon will inform the way materials are mixed and separated in many industries that rely on the mixing of solids and liquids, from oil drilling to 3D printing to the food industry.

###

The project, titled “Collaborative Research: Micromechanics of Meniscus-bound Particle Clusters,” received a total of $510,000 with $291,968 assigned to Pitt. It begins Sept. 1, 2020, and is expected to last 3 years.

Media Contact
Maggie Pavlick
[email protected]

Original Source

https://www.engineering.pitt.edu/News/2020/Velankar-NSF/

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsParticle PhysicsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Navigating Dementia Care: Transitions in Home Management

December 25, 2025

ERO1A Enhances Bladder Cancer Growth via JAK-STAT

December 25, 2025

Addressing Older Adults’ Marginalization in Healthcare

December 25, 2025

Understanding Economic Exploitation in Turkish Oncology Practices

December 25, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Navigating Dementia Care: Transitions in Home Management

ERO1A Enhances Bladder Cancer Growth via JAK-STAT

Addressing Older Adults’ Marginalization in Healthcare

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.