• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Uncovering the nitty-gritty details of surface tension and flow behavior

Bioengineer by Bioengineer
July 29, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pitt Professor receives $292K from NSF to investigate the micromechanics of surface tension

IMAGE

Credit: University of Pittsburgh

Dry sand can be poured out of a bucket almost like a liquid; if you try to build a sandcastle with dry sand, you won’t have much luck. However, if you add just a little bit of water, everything about the sand’s behavior changes: It cannot be poured like a liquid and, instead, holds together well enough to build something.

That difference is an example of how surface tension affects flow behavior, an element that is crucial in a variety of physical processes that involve mixing together liquid and solid particles. Sachin Velankar, professor of chemical and petroleum engineering at the University of Pittsburgh’s Swanson School of Engineering, received $291,968 from the National Science Foundation for his collaborative research that seeks to better understand these phenomena. Velankar holds a secondary appointment in the Department of Mechanical Engineering and Materials Science.

“Dry sand is really a mix of sand particles and air. The reason wet sand behaves so differently from dry sand is that water wants to wet the sand particles more than air does,” explained Velankar. “If you take the wet sand and look under microscope, you’ll see that between each pair of sand particles is a ring of water – a meniscus -sticking them together. That’s why the wet sand can’t be poured: the granules just won’t separate easily. We want to understand how such wet particles separate under flow.”

Velankar will partner with Charles Schroeder, professor of chemical and biomolecular engineering at the University of Illinois – Urbana-Champaign, on the project. The two will not be looking at sand, however. Instead, they will use state-of-the-art technology to manipulate microscopic particles suspended in fluid to study their behavior, the conditions that bind them together and the force necessary to break them apart.

“I’ve been working in this area for more than 10 years and thought about questions of micromechanics for a long time but didn’t know how to approach it,” said Velankar. “It’s hard to manipulate particles precisely at this scale. That’s where the collaboration comes in.”

Schroeder’s method involves a small microfluidic device, called a Stokes trap, with strategically placed channels for incoming and outgoing liquid streams. The particles, suspended in the chamber, are manipulated as liquid flows through the different channels.

The research will provide a fundamental understanding of the dynamics and rupture of particle clusters in well-defined flows. Understanding the micromechanics of this phenomenon will inform the way materials are mixed and separated in many industries that rely on the mixing of solids and liquids, from oil drilling to 3D printing to the food industry.

###

The project, titled “Collaborative Research: Micromechanics of Meniscus-bound Particle Clusters,” received a total of $510,000 with $291,968 assigned to Pitt. It begins Sept. 1, 2020, and is expected to last 3 years.

Media Contact
Maggie Pavlick
[email protected]

Original Source

https://www.engineering.pitt.edu/News/2020/Velankar-NSF/

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsParticle PhysicsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Cancer Immunotherapy by Targeting DNA Repair

December 3, 2025
blank

Evaluating eGFR Equations in Chinese Children

December 3, 2025

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

December 3, 2025

Botanical Extracts’ Antibacterial Activity Boosted by Enhancers

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.