• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Uncovering a 'smoking gun' of biological aging clocks

Bioengineer by Bioengineer
February 14, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A newly discovered ribosomal DNA (rDNA) clock can be used to accurately determine an individual’s chronological and biological age, according to research led by Harvard T.H. Chan School of Public Health. The ribosomal clock is a novel biomarker of aging based on the rDNA, a segment of the genome that has previously been mechanistically linked to aging. The ribosomal clock has potentially wide applications, including measuring how exposures to certain pollutants or dietary interventions accelerate or slow aging in a diversity of species, including mice and humans.

“We have hopes that the ribosomal clock will provide new insights into the impact of the environment and personal choices on long-term health,” said senior author Bernardo Lemos, associate professor of environmental epigenetics. “Determining biological age is a central step to understanding fundamental aspects of aging as well as developing tools to inform personal and public health choices.”

The study will be published online in Genome Research on February 14, 2019.

Aging is exhibited by organisms as diverse as yeast, worms, flies, mice, and humans. Age is also the major risk factor for a plethora of diseases, including neurological diseases, cardiovascular diseases, and cancer. There are two types of age: chronological age, or the number of years a person or animal has lived, and biological age, which accounts for various lifestyle factors that can shorten or extend lifespan, including diet, exercise, and environmental exposures. Overall, biological age has been shown to be a better predictor of all-cause mortality and disease onset than chronological age.

For this new study, the researchers looked at the rDNA, the most active segment of the genome and one which has also been mechanistically linked to aging in a number of previous studies. Lemos and lead author Meng Wang, a research fellow in the Department of Environmental Health, hypothesized that the rDNA is a “smoking gun” in the genomic control of aging and might harbor a previously unrecognized clock. To explore this concept, they examined epigenetic chemical alterations (also known as DNA methylation) in CpG sites, where a cytosine nucleotide is followed by a guanine nucleotide. The study homed in on the rDNA, a small (13 kilobases) but essential and highly active segment of the genome, as a novel marker of age.

Analysis of genome-wide data sets from mice, dogs, and humans indicated that the researchers’ hypothesis had merit: numerous CpGs in the rDNA exhibited signs of increased methylation–a result of aging. To further test the clock, they studied data from 14-week-old mice that responded to calorie restriction, a known intervention that promotes longevity. The mice that were placed on a calorie-restricted regimen showed significant reductions in rDNA methylation at CpG sites compared with mice that did not have their caloric intake restricted. Moreover, calorie-restricted mice showed rDNA age that was younger than their chronological age.

The researchers were surprised that assessing methylation in a small segment of the mammalian genome yielded clocks as accurate as clocks built from hundreds of thousands of sites along the genome. They noted that their novel approach could prove faster and more cost effective at determining biological and chronological age than current methods of surveying the dispersed sites in the genome. The findings underscore the fundamental role of rDNA in aging and highlight its potential to serve as a widely applicable predictor of individual age that can be calibrated for all mammalian species.

Importantly, the clocks respond to interventions, which could allow scientists to study how biological age responds to environmental exposures and lifestyle choices. Being able to ascertain an accurate biological age can give a person an indication of how much better or worse he or she is doing relative to the general population and could potentially help monitor whether someone is at heightened risk of death or a certain disease.

###

Visit the Harvard Chan School website for the latest news, press releases, and multimedia offerings.

Media Contact
Chris Sweeney
[email protected]
617-432-8416
http://dx.doi.org/10.1101/gr.241745.118

Tags: BioinformaticscancerCardiologyDeath/DyingEnvironmental HealthMedicine/HealthneurobiologyPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Checkpoint Inhibitors Plus Antiangiogenics in Liver Cancer

October 27, 2025

New Cleveland Clinic Study Reveals That Up to 5% of Americans Harbor Cancer-Linked Genetic Mutations

October 27, 2025

Innovative Tool Developed to Detect Hidden ‘Zombie Cells’

October 27, 2025

Epigenetic Changes in PHOX2A, CDH2 Drive Myeloma

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UMass Amherst Secures $17.9 Million in NIH Grants to Boost Opioid Overdose and HIV Prevention Research

Bumblebees Respond to Female Signals in Short Range

Why 10–15 Minute Walks Boost Your Heart Health More Than Short Strolls

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.