• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UM study suggests climate change limits forest recovery after wildfires

Bioengineer by Bioengineer
March 12, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtesy of Kimberley Davis

MISSOULA – New University of Montana research suggests climate change makes it increasingly difficult for tree seedlings to regenerate following wildfires in low-elevation forests, which could contribute to abrupt forest loss.

The study, “Wildfires and Climate Change Push Low-elevation Forests Across a Critical Climate Threshold for Tree Regeneration,” was published March 11 in the Proceedings of the National Academy of Sciences and is available online at http://bit.ly/2HeZc8t.

Kimberley Davis, a postdoctoral research associate in the W.A. Franke College of Forestry and Conservation at UM, and her co-authors examined the relationship between annual climate and post-fire regeneration of ponderosa pine and Douglas fir in low-elevation forests of western North America.

“Forests in the western U.S. are increasingly affected by both climate change and wildfires,” said Davis, the study’s lead author. “The ability of forests to recover following wildfire depends on annual climate conditions, because tree seedlings are particularly vulnerable to hot and dry weather. We wanted to identify the specific conditions necessary for post-fire tree regeneration to better understand how climate change has been affecting forests through time.”

The authors used tree rings to determine establishment dates of more than 2,800 trees that regenerated after fires in Arizona, California, Colorado, Idaho, Montana and New Mexico between 1988 and 2015. Annual tree regeneration rates were much lower when seasonal climate conditions, including temperature, humidity and soil moisture, crossed specific threshold values.

Over the past 20 years, climate conditions have crossed these thresholds at the majority of study sites, leading to abrupt declines in how often annual conditions are suitable for tree regeneration. The study results highlight how future fires in similar sites may catalyze transitions from forest to non-forest ecosystems.

“Adult trees can survive in warmer and drier conditions than seedlings, and our study found that some low-elevation areas that are currently forested no longer have climate conditions that are suitable for tree regeneration,” Davis said. “In these areas, high-severity fire may lead to ecosystem transitions from forests to grasslands or shrublands.

“It is important to understand how climate change and wildfires will affect tree regeneration because forests are important economically, ecologically and culturally,” she said. “Ponderosa pine and Douglas fir are two of the most dominant tree species in the western U.S., and they are critical for the regional forestry industry. Forests also contain high levels of biodiversity and provide a variety of ecosystem services, such as carbon sequestration and water regulation and supply. Additionally, people love to recreate in forests, which is an increasingly important part of the economy in western states.”

###

Other UM co-authors include Solomon Dobrowski, Philip Higuera, Anna Sala and Marco Maneta. Additional co-authors include researchers from the U.S. Forest Service; the University of Colorado, Boulder; and the Aldo Leopold Wilderness Research Institute.

Media Contact
Kimberley Davis
[email protected]

Original Source

http://bit.ly/2u28Qmj

Related Journal Article

http://dx.doi.org/10.1073/pnas.1815107116

Tags: BiologyClimate ChangeClimate ScienceEcology/EnvironmentForestryPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

The Role of Blood Vessels in Shaping Brain Development

October 8, 2025
The Science Behind the Talking Dog Dream: What Research Reveals

The Science Behind the Talking Dog Dream: What Research Reveals

October 8, 2025

Harnessing Alcohol Dehydrogenases for Sustainable Amide and Thioester Synthesis

October 8, 2025

Engineered Bacterial Therapy Stimulates Immune Response in Preclinical Cancer Studies

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1100 shares
    Share 439 Tweet 275
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Investment Returns: Decision Transformer Insights

Rural SARS-CoV-2 Death Risk Remains Elevated Two Years

The Role of Blood Vessels in Shaping Brain Development

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.