• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ultra-small, parasitic bacteria found in groundwater, moose — and you

Bioengineer by Bioengineer
July 21, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Matthew Modoono for Forsyth Institute

Inside your mouth right now, there is a group of bacteria whose closest relatives can also be found in the belly of a moose, in dogs, cats, and dolphins, and in groundwater deep under the Earth’s surface. In a stunning discovery, scientists have found that these organisms have adapted to these incredibly diverse environments–without radically changing their genomes.

The organisms are members of the TM7, or Sacchraribacteria, phylum. These are ultra-small, parasitic bacteria with small genomes that belong to a larger group called the Candidate Phyla Radiation (CPR). These CPR bacteria are mysterious “dark matter” that represent more than 25 percent of all bacterial diversity, yet we know very little about them since the vast majority remain uncultivated.

In research first published as a pre-print in 2018, and now formally in the journal Cell Reports, scientists describe their findings that Saccharibacteria within a mammalian host are more diverse than ever anticipated. The researchers also discovered that certain members of the bacteria are found in the oral cavity of humans, the guts of other mammals, and in groundwater. While these environments are all very different, the bacteria’s tiny genomes remain minimally changed between humans and groundwater. This indicates that humans acquired the bacteria more recently, on an evolutionary timescale.

“It’s the only bacteria we know that has hardly changed when they adapted to humans,” said Dr. Jeffrey Scott McLean, a microbiologist and Associate Professor of Periodontics at the University of Washington School of Dentistry, and lead author of the paper.

The TM7 bacteria were a complete mystery to scientists until Dr. Xuesong He, Associate Member of Staff at the Forsyth Institute and co-author of the paper, first isolated the bacterium TM7x, a member of CPR, in 2014. Since then, researchers have learned that CPR includes a huge number of different bacteria, all with tiny genomes. These bacteria need a host to survive and are unique in that they can’t make their own amino acids and nucleotides, which are essential building blocks for life.

“I see this as a huge discovery,” said Wenyuan Shi, CEO and Chief Scientific Officer at the Forsyth Institute and co-author on the paper. “This creature survives in both humans and groundwater, which indicates there are similarities that allow these bacteria to adapt to humans.”

Previous research by Dr. Batbileg Bor, Assistant Member of Staff at the Forsyth Institute and co-author of the paper, showed that TM7 can easily jump from one bacterial host to another. This could explain how they ended up in mammals, since mammals drink groundwater.

“The most likely reason we see a large diversity of these bacteria in humans, yet one group of bacteria remains nearly identical to those in groundwater, is that some groups were acquired in ancient mammal relatives and they expanded over time across mammals, whereas this one highly similar group more recently jumped directly into humans,” McLean said.

TM7 and other ultra-small, parasitic bacteria within CPR may play important roles in health and disease that we have yet to discover. Since they act as parasites–living with and killing other bacteria–TM7 could change the overall microbiome by modulating the abundance of bacteria, McLean said. Scientists are just scratching the surface of understanding how much our microbiome impacts our overall health.

Another major contribution of this research has been developing a systematic way to name these newly discovered bacteria, setting the foundation for classifying other isolated strains in the future.

The fact that humans acquired TM7 recently is a discovery that has broader implications for understanding our co-evolutionary pathways with the microbes that live on and within us.

“There are only a couple hundred genes that are different in these ultra-small bacteria between what lives deep in the subsurface environment and those that have become common bacteria in our mouths,” McLean said. “That is a remarkable feat for bacteria missing so many genes.”

###

Media Contact
Alexandra Nicodemo
[email protected]

Original Source

https://www.forsyth.org/news/ultra-small-parasitic-bacteria-found-in-groundwater-moose-and-you/

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2020.107939

Tags: BiologyCell BiologyDentistry/Periodontal DiseaseEvolutionGeneticsMedicine/HealthMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Biomarkers and Pathogenesis of Myocardial Infarction Linked to Ankylosing Spondylitis Through Systems Biology

Unveiling Biomarkers and Pathogenesis of Myocardial Infarction Linked to Ankylosing Spondylitis Through Systems Biology

August 14, 2025
Amyloid-Based Antiphage Defense in E. coli Uncovered

Amyloid-Based Antiphage Defense in E. coli Uncovered

August 14, 2025

Critically Endangered Plains-Wanderer Discovered in Uncharted Habitat

August 14, 2025

PLOS Biology Joins MetaROR as Official Partner Journal

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Single-Cell eQTL Uncovers Retrovirus Regulation in Autoimmune Cells

Metabolic Control: Unlocking Immunological Aging Secrets

Advances in NSCLC Treatment Post-Chemoimmunotherapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.