• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

UK researchers develop ultrafast semiconductors

Bioengineer by Bioengineer
July 8, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cardiff in world-beating CS breakthrough

IMAGE

Credit: Mike Hall Photography

UK researchers have developed world-leading Compound Semiconductor (CS) technology that can drive future high-speed data communications.

A team from Cardiff University’s Institute for Compound Semiconductors (ICS) worked with collaborators to innovate an ultrafast and highly sensitive ‘avalanche photodiode’ (APD) that creates less electronic ‘noise’ than its silicon rivals.

APDs are highly sensitive semiconductor devices that exploit the ‘photoelectric effect’ – when light hits a material – to convert light to electricity.

Faster, supersensitive APDs are in demand worldwide for use in high-speed data communications and light detection and ranging (LIDAR) systems for autonomous vehicles.

A paper outlining the breakthrough in creating extremely low excess noise and high sensitivity APDs is published today in Nature Photonics.

Cardiff researchers led by Ser Cymru Professor Diana Huffaker, Scientific Director of ICS and Ser Cymru Chair in Advanced Engineering and Materials, partnered with the University of Sheffield and the California NanoSystems Institute, University of California, Los Angeles (UCLA) to develop the technology.

Professor Huffaker said: “Our work to develop extremely low excess noise and high sensitivity avalanche photodiodes has the potential to yield a new class of high-performance receivers for applications in networking and sensing.

“The innovation lies in the advanced materials development using molecular beam epitaxy (MBE) to “grow” the compound semiconductor crystal in an atom-by-atom regime. This particular material is rather complex and challenging to synthesize as it combines four different atoms requiring a new MBE methodology. The Ser Cymru MBE facility is designed specifically to realize an entire family of challenging materials targeting future sensing solutions.”

Dr. Shiyu Xie, Ser Cymru Cofund Fellow said: “The results we are reporting are significant as they operate in very low-signal environment, at room temperature, and very importantly are compatible with the current InP optoelectronic platform used by most commercial communication vendors.

“These APDs have a wide range of applications. In LIDAR, or 3D laser mapping, they are used to produce high-resolution maps, with applications in geomorphology, seismology and in the control and navigation of some autonomous cars.

“Our findings can change the global field of research in APDs. The material we have developed can be a direct substitute in the current existing APDs, yielding a higher data transmission rate or enabling a much longer transmission distance.”

The Ser Cymru Group within ICS is now preparing a proposal with collaborators at Sheffield for funding from UK Research and Innovation to support further work.

Cardiff University Vice-Chancellor, Professor Colin Riordan, added: “The work of Professor Huffaker’s Ser Cymru Group plays a vital role in supporting the ongoing success of the wider Compound Semiconductor cluster, CS Connected, which brings together ten industry and academic partners in South Wales to develop 21st Century technologies that create economic prosperity.”

Professor Huffaker added: “Our research produces direct benefits for industry. We are working closely with Airbus and the Compound Semiconductor Applications Catapult to apply this technology to future free space optics communication system.”

###

Media Contact
Heath Jeffries
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41566-019-0477-4

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsMolecular PhysicsNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advances in Bone Microstructure Reveal Forensic Clues

Metazoan Parasite Diversity in Little Tunny, Tunisia

Measuring Micro and Nanoplastics in Blood via Pyrolysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.