• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UIC researchers identify new process to produce ammonia with a much smaller carbon footprint

Bioengineer by Bioengineer
December 1, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research published in ACS Catalysis

IMAGE

Credit: Aditya Prajapati and Meenesh Singh

Ammonia is the second most commonly produced chemical in the world and an important component of most fertilizers, but current industrial processes to make ammonia produce several millions of tons of carbon dioxide-a potent greenhouse gas-each year.

Now, researchers led by Meenesh Singh, assistant professor of chemical engineering at the University of Illinois Chicago College of Engineering, describe a new process to produce ammonia with a potentially much lower carbon footprint. They report their findings in the journal ACS Catalysis.

Nitrogen gas is one of the components used to make ammonia, but because nitrogen bonds in nitrogen gas are very stable, a lot of energy is needed to break them so the nitrogen can bind to hydrogen to produce ammonia.

“Current methods to make ammonia from nitrogen are very energy-intensive and require the burning of fossil fuels to generate enormous amounts of heat, and this produces a lot of greenhouse gas as a byproduct,” said Singh.

Singh and colleagues have developed a new method to produce ammonia that relies on the use of a mesh screen coated in copper – a catalyst that helps bind nitrogen to hydrogen to make ammonia. The electrification of the screen helps drive the reactions.

Pure nitrogen gas is pushed through the screen and then interacts with water, which provides the hydrogen. Even though Singh’s process uses similar amounts of energy compared to the traditional process, it requires far less fossil fuels than traditional methods – just enough to electrify the screen. “The electricity can come from solar or wind energy, which would really make a huge difference in reducing greenhouse gas emissions,” said Singh. “Even modern electricity-generating powerplants are highly efficient, and if the grid is powered conventionally, our process still uses less fossil fuels and generates less harmful greenhouse gases than conventional ammonia production.”

Currently, Singh’s process produces 20% ammonia and 80 percent hydrogen gas. “We are hoping to increase the production of ammonia, but our early efforts so far are promising, and the savings in the carbon emissions are still significant if you were to scale up our process to produce large amounts of ammonia,” Singh said.

A provisional patent for the new process has been filed by the UIC Office of Technology Management.

Singh’s group is now looking at using air – instead of purified nitrogen gas – as a source of nitrogen for producing ammonia using their unique method. “Using air would give us even more savings when it comes to greenhouse gases because we’re using readily available air instead of nitrogen gas, which needs to be purified and bottled.”

###

Nishithan C. Kani and Aditya Prajapati of the University of Illinois at Chicago and Brianna Collins and Jason Goodpaster of the University of Minnesota are co-authors on the paper.

Media Contact
Jackie Carey
[email protected]

Original Source

https://today.uic.edu/uic-researchers-identify-new-process-to-produce-ammonia-with-a-much-smaller-carbon-footprint

Related Journal Article

http://dx.doi.org/10.1021/acscatal.0c04864

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesIndustrial Engineering/Chemistry
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Better diet and glucose uptake in the brain lead to longer life in fruit flies

January 16, 2021
IMAGE

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021

Nanodiamonds feel the heat

January 15, 2021

Controlling chemical catalysts with sculpted light

January 15, 2021
Next Post
IMAGE

Transportation of water into the deep Earth by Al-phase D

IMAGE

FAU receives NIH grant to enhance social engagement in older adults

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Infectious/Emerging DiseasesClimate ChangePublic HealthMedicine/HealthBiologyCell BiologycancerMaterialsGeneticsEcology/EnvironmentChemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science

Recent Posts

  • Scientists shed light on how and why some people report “hearing the dead”
  • Changing diets — not less physical activity — may best explain childhood obesity crisis
  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In