• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

UCLA researchers identify potential new combination treatment for pancreatic cancer

Bioengineer by Bioengineer
March 20, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

FINDINGS

Researchers from UCLA’s Jonsson Comprehensive Cancer Center have identified a possible new therapeutic strategy using two types of drug inhibitors at once to treat one of the world’s deadliest cancers. The combination approach uses one drug that inhibits the process — known as lysosome — that allows cancer cells to recycle essential nutrients to survive, and another drug that blocks the pathway used to repair DNA. Researchers found the approach to be promising after testing it on pancreatic cancer cells and mice in the laboratory.

BACKGROUND

Pancreatic cancer, which is the third leading cause of cancer-related deaths in the United States, is known to be highly resistant to treatments. The lack of effective treatments also suggests there is an inadequate understanding of the biologic complexity of the disease and the mechanisms to explain why this type of cancer often becomes resistant to therapies that work in treating other types of cancers.

Because of these limitations, researchers have sought to better understand how the cancer cell pathways work to help identify potential new targets for therapies. Pancreatic cancer cells rely on lysosome-dependent pathways, which are an essential component of autophagy, where cancer cells break down and recycle some of their own components for fuel. Understanding the underlying mechanism and impact of inhibiting this pathway can lead to new treatment strategies for the disease.

METHOD

Researchers studied two sets of data to try to understand the mechanism of lysosome-dependent pathways. The team first took chloroquine, a readily available drug used to treat malaria, and combined it with more than 500 different inhibitors to screen for any unexplored interactions that could yield a “synergistic” effect. This occurs when the effects of two drugs combined together produce a more powerful response than if they were used alone. With this information, the team found a complementary inhibitor called replication stress response inhibitor. In the second set of data, the researchers measured metabolites — small molecules — in pancreatic tumor cells that were treated with chloroquine alone. They found the drug causes a reduction in aspartate, an important amino acid to synthesize nucleotides, the building blocks for DNA replication and repair.

IMPACT

The study provides evidence that using chloroquine in combination with an inhibitor of the replication stress response pathway could be a new treatment to reduce tumor growth in pancreatic cancer patients and help improve the prognosis for people with the disease. The findings also stress the importance of learning how existing drugs work to repurpose them for potential use in treating other diseases.

###

AUTHORS

Senior authors are Dr. Timothy Donahue, professor of surgery and chief of surgical oncology, and a member of UCLA’s Jonsson Comprehensive Cancer Center, and Dr. Caius Radu, professor of molecular and medical pharmacology and a member of UCLA’s Jonsson Comprehensive Cancer Center. The first author is Dr. Irmina Elliott, a resident with the department of surgery. Other authors are listed in the journal article.

JOURNAL

The research is published in the Proceedings of the National Academy of Sciences.

FUNDING

The study was supported by grants from the National Institutes of Health and the W.M. Keck Foundation.

Media Contact
Denise Heady
 @uclahealth

310-405-4703
http://newsroom.ucla.edu/releases/ucla-potential-new-combination-treatment-pancreatic-cancer

Tags: cancerMedicine/Health
Share14Tweet8Share2ShareShareShare2

Related Posts

Ovarian Cancer Trends in War-Torn Syria

Ovarian Cancer Trends in War-Torn Syria

August 22, 2025
Nutrition Education Prevents Malnutrition in Radiotherapy

Nutrition Education Prevents Malnutrition in Radiotherapy

August 22, 2025

Metabolic Profiling Reveals RCC Drug Response

August 22, 2025

Deep Learning Radiomics Advances Tongue Cancer Staging

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ovarian Cancer Trends in War-Torn Syria

SARS-CoV-2 Triggers Pro-Fibrotic, Pro-Thrombotic Foam Cells

RETICULATA1: Key Plastid Basic Amino Acid Transporter

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.