• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

UC Riverside physicists create exotic electron liquid

Bioengineer by Bioengineer
February 4, 2019
in Cancer
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The first production of an electron liquid at room temperature opens the way for new optoelectronic devices and basic physics studies

IMAGE

Credit: QMO Lab, UC Riverside.


RIVERSIDE, Calif. — By bombarding an ultrathin semiconductor sandwich with powerful laser pulses, physicists at the University of California, Riverside, have created the first “electron liquid” at room temperature.

The achievement opens a pathway for development of the first practical and efficient devices to generate and detect light at terahertz wavelengths — between infrared light and microwaves. Such devices could be used in applications as diverse as communications in outer space, cancer detection, and scanning for concealed weapons.

The research could also enable exploration of the basic physics of matter at infinitesimally small scales and help usher in an era of quantum metamaterials, whose structures are engineered at atomic dimensions.

The UCR physicists published their findings online Feb. 4 in the journal Nature Photonics. They were led by Associate Professor of Physics Nathaniel Gabor, who directs the UCR Quantum Materials Optoelectronics Lab. Other co-authors were lab members Trevor Arp and Dennis Pleskot, and Associate Professor of Physics and Astronomy Vivek Aji.

A video depicting the research is available here.

In their experiments, the scientists constructed an ultrathin sandwich of the semiconductor molybdenum ditelluride between layers of carbon graphene. The layered structure was just slightly thicker than the width of a single DNA molecule. They then bombarded the material with superfast laser pulses, measured in quadrillionths of a second.

“Normally, with such semiconductors as silicon, laser excitation creates electrons and their positively charged holes that diffuse and drift around in the material, which is how you define a gas,” Gabor said. However, in their experiments, the researchers detected evidence of condensation into the equivalent of a liquid. Such a liquid would have properties resembling common liquids such as water, except that it would consist, not of molecules, but of electrons and holes within the semiconductor.

“We were turning up the amount of energy being dumped into the system, and we saw nothing, nothing, nothing — then suddenly we saw the formation of what we called an ‘anomalous photocurrent ring’ in the material,” Gabor said. “We realized it was a liquid because it grew like a droplet, rather than behaving like a gas.”

“What really surprised us, though, was that it happened at room temperature,” he said. “Previously, researchers who had created such electron-hole liquids had only been able to do so at temperatures colder than even in deep space.”

The electronic properties of such droplets would enable development of optoelectronic devices that operate with unprecedented efficiency in the terahertz region of the spectrum, Gabor said. Terahertz wavelengths are longer than infrared waves but shorter than microwaves, and there has existed a “terahertz gap” in the technology for utilizing such waves. Terahertz waves could be used to detect skin cancers and dental cavities because of their limited penetration and ability to resolve density differences. Similarly, the waves could be used to detect defects in products such as drug tablets and to discover weapons concealed beneath clothing.

Terahertz transmitters and receivers could also be used for faster communication systems in outer space. And, the electron-hole liquid could be the basis for quantum computers, which offer the potential to be far smaller than silicon-based circuitry now in use, Gabor said.

More generally, Gabor said, the technology used in his laboratory could be the basis for engineering “quantum metamaterials,” with atom-scale dimensions that enable precise manipulation of electrons to cause them to behave in new ways.

In further studies of the electron-hole “nanopuddles,” the scientists will explore their liquid properties such as surface tension.

“Right now, we don’t have any idea how liquidy this liquid is, and it would be important to find out,” Gabor said.

Gabor also plans to use the technology to explore basic physical phenomena. For example, cooling the electron-hole liquid to ultra-low temperatures could cause it to transform into a “quantum fluid” with exotic physical properties that could reveal new fundamental principles of matter.

In their experiments, the researchers used two key technologies. To construct the ultrathin sandwiches of molybdenum ditelluride and carbon graphene, they used a technique called “elastic stamping.” In this method, a sticky polymer film is used to pick up and stack atom-thick layers of graphene and semiconductor.

And to both pump energy into the semiconductor sandwich and image the effects, they used “multi-parameter dynamic photoresponse microscopy” developed by Gabor and Arp. In this technique, beams of ultrafast laser pulses are manipulated to scan a sample to optically map the current generated.

###

The title of the paper is: “Electron-Hole Liquid in a Van Der Waals Heterostructure Photocell at Room Temperature.”

The research was supported by the Air Force Office of Scientific Research; the U.S. Department of Energy, Office of Science, Basic Energy Sciences; the National Science Foundation; a Cottrell Scholar Award; the Canadian Institute for Advanced Research; and NASA.

Media Contact
Iqbal Pittalwala
[email protected]
951-827-6050

Related Journal Article

http://dx.doi.org/10.1038/S41566-019-0349-Y

Tags: Atomic PhysicscancerChemistry/Physics/Materials SciencesMaterialsOpticsResearch/DevelopmentSpace/Planetary ScienceSuperconductors/SemiconductorsTechnology/Engineering/Computer ScienceWeaponry
Share12Tweet8Share2ShareShareShare2

Related Posts

Derazantinib Boosts Gemcitabine by Blocking MUC5AC

December 30, 2025

FOCUS Study Reveals Insights on Melphalan for Uveal Melanoma

December 29, 2025

Black Grape Anthocyanins Boost 5-FU Cancer Therapy

December 29, 2025

Girdin Silencing Boosts Mebendazole’s Ovarian Cancer Fight

December 29, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    71 shares
    Share 28 Tweet 18
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

GM-CSF Boosts Thin Endometrium Growth in Mice, Humans

Derazantinib Boosts Gemcitabine by Blocking MUC5AC

Carrying Capacity Alert Index Gauges African Grassland Sustainability

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.