• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UBCO researcher uses computer modelling to predict reef health

Bioengineer by Bioengineer
August 25, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

‘Virtual’ coral reefs become diagnostic tool to help manage the planet’s reefs

IMAGE

Credit: Jean-Philippe Maréchal.

A UBC Okanagan researcher has developed a way to predict the future health of the planet’s coral reefs.

Working with scientists from Australia’s Flinders’ University and privately-owned research firm Nova Blue Environment, biology doctoral student Bruno Carturan has been studying the ecosystems of the world’s endangered reefs.

“Coral reefs are among the most diverse ecosystems on Earth and they support the livelihoods of more than 500 million people,” says Carturan. “But coral reefs are also in peril. About 75 per cent of the world’s coral reefs are threatened by habitat loss, climate change and other human-caused disturbances.”

Carturan, who studies resilience, biodiversity and complex systems under UBCO Professors Lael Parrott and Jason Pither, says nearly all the world’s reefs will be dangerously affected by 2050 if no effective measures are taken.

There is hope, however, as he has determined a way to examine the reefs and explore why some reef ecosystems appear to be more resilient than others. Uncovering why, he says, could help stem the losses.

“In other ecosystems, including forests and wetlands, experiments have shown that diversity is key to resilience,” says Carturan. “With more species, comes a greater variety of form and function–what ecologists call traits. And with this, there is a greater likelihood that some particular traits, or combination of traits, help the ecosystem better withstand and bounce back from disturbances.”

The importance of diversity for the health and stability of ecosystems has been extensively investigated by ecologists, he explains. While the consensus is that ecosystems with more diversity are more resilient and function better, the hypothesis has rarely been tested experimentally with corals.

Using an experiment to recreate the conditions found in real coral reefs is challenging for several reasons–one being that the required size, timeframe and number of different samples and replicates are just unmanageable.

That’s where computer simulation modelling comes in.

“Technically called an ‘agent-based model’, it can be thought of as a virtual experimental arena that enables us to manipulate species and different types of disturbances, and then examine their different influences on resilience in ways that are just not feasible in real reefs,” explains Carturan.

In his simulation arena, individual coral colonies and algae grow, compete with one another, reproduce and die. And they do all this in realistic ways. By using agent-based models–with data collected by many researchers over decades–scientists can manipulate the initial diversity of corals, including their number and identity, and see how the virtual reef communities respond to threats.

“This is crucial because these traits are the building blocks that give rise to ecosystem structure and function. For instance, corals come in a variety of forms–from simple spheres to complex branching–and this influences the variety of fish species these reefs host, and their susceptibility to disturbances such as cyclones and coral bleaching.”

By running simulations over and over again, the model can identify combinations that can provide the greatest resilience. This will help ecologists design reef management and restoration strategies using predictions from the model, says collaborating Flinders researcher Professor Corey Bradshaw.

“Sophisticated models like ours will be useful for coral-reef management around the world,” Bradshaw adds. “For example, Australia’s iconic Great Barrier Reef is in deep trouble from invasive species, climate change-driven mass bleaching and overfishing.”

“This high-resolution coral ‘video game’ allows us to peek into the future to make the best possible decisions and avoid catastrophes.”

###

The research, supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation, was published recently in eLife.

Media Contact
Wellborn, Patty
[email protected]

Original Source

https://news.ok.ubc.ca/2020/08/25/ubco-researcher-uses-computer-modelling-to-predict-reef-health

Related Journal Article

http://dx.doi.org/10.7554/eLife.55993

Tags: Climate ChangeComputer ScienceEarth ScienceEcology/EnvironmentFisheries/AquacultureMarine/Freshwater BiologyOceanographyPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Barriers and Boosts to Person-Centered Nursing Care

November 1, 2025

Racial Disparities in Prostate Cancer Treatment Explored

November 1, 2025

Enhancing High-Voltage Resistance in Polymer Electrolytes

November 1, 2025

Perspectives on Anorexia Recovery: Lived Experiences vs. Professionals

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosts to Person-Centered Nursing Care

Racial Disparities in Prostate Cancer Treatment Explored

Enhancing High-Voltage Resistance in Polymer Electrolytes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.