• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tunable smart materials

Bioengineer by Bioengineer
March 22, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Osaka University invent tunable microparticles that can assemble into larger structures based on the content of attached chemical groups, which may lead to the development of smart sensors or self-healing materials

IMAGE

Credit: Osaka University

Osaka, Japan – Scientists from the Graduate School of Science at Osaka University created superabsorbent polymer (SAP) microparticles that self-assemble into structures that can be modified by adjusting the proportion of particle type. This research may lead to new tunable biomimetic “smart materials” that can sense and respond to specific chemicals.

Biological molecules in living organisms have a remarkable ability to form self-assembled structures when triggered by an external molecule. This has led scientists to try to create other “smart materials” that respond to their environment. Now, a team of researchers at Osaka University has come up with a tunable system involving poly(sodium acrylate) microparticles that can have one of two types of chemical groups attached. The adjustable parameters x and y refer to the molar percent of microparticles with β-cyclodextrin (βCD) and adamantyl (Ad) residues, respectively.

“We found that the macroscopic shape of assemblies formed by microparticles was dependent on the residue content,” co-senior author Akihito Hashidzume says. In order for assemblies to form, x needed to be at least 22.3; however, the shape of assemblies could be controlled by varying y. As the value of y increased, the clusters became more and more elongated. The team hypothesized that at higher values of y, small clusters could form early and stick together, leading to elongated aggregates. Conversely, when y was small, clusters would only stick together after many collisions, resulting in more spherical aggregates. This provides a way to tune to the shape of the resulting clusters. The team measured the aggregates under a microscope to determine the shapes of assemblies using a statistical analysis.

“On the basis of these findings, we hope to help reveal the origin of the diverse shape of living organisms, which are macroscopic assemblies controlled by molecular recognition,” co-senior author Akira Harada says. This research may also lead to the development of new smart sensors that can form clusters large enough to be seen with the naked eye.

###

The article, “The macroscopic shape of assemblies formed from microparticles based on host-guest interaction dependent on the guest content,” was published in Scientific Reports at DOI: https://doi.org/10.1038/s41598-021-85816-z

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan’s leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan’s most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en

Media Contact
Saori Obayashi
[email protected]

Original Source

https://resou.osaka-u.ac.jp/en/research/20210318_1

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-85816-z

Tags: BiochemistryBiomechanics/BiophysicsChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsMolecular PhysicsNanotechnology/MicromachinesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Metabolic Messenger: Unveiling Growth Differentiation Factor 15

Metabolic Messenger: Unveiling Growth Differentiation Factor 15

August 18, 2025
blank

4D Fetal Echocardiography: Insights on Brachiocephalic Vein Anomalies

August 18, 2025

Blocking c-Abl Halts Glioma Cell Growth

August 18, 2025

MoS2/NC Composite: A Breakthrough Lithium Battery Anode

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metabolic Messenger: Unveiling Growth Differentiation Factor 15

4D Fetal Echocardiography: Insights on Brachiocephalic Vein Anomalies

Blocking c-Abl Halts Glioma Cell Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.