• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, December 11, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Trions exhibit novel characteristics in moiré superlattices

Bioengineer by Bioengineer
June 14, 2021
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New physics revealed by UC Riverside-led research could improve understanding of moiré superlattices

IMAGE

Credit: Ella Maru Studio, with contributions from Hongyi Yu and Wang Yao at the University of Hong Kong; and Wangxiang Li and Joshua Lui at UC Riverside.

RIVERSIDE, Calif. — When two similar atomic layers with mismatching lattice constants — the constant distance between a layer’s unit cells — and/or orientation are stacked together, the resulting bilayer can exhibit a moiré pattern and form a moiré superlattice.

Moiré patterns are interference patterns that typically arise when one object with a repetitive pattern is placed over another with a similar pattern. Moiré superlattices, formed by atomic layers, can exhibit fascinating phenomena not found in the individual layers, opening the door to technological revolutions in many areas, including electricity transmission, information engineering, and quantum computing.

By shining laser light on semiconducting moiré superlattices formed by stacking two atomically thin materials — monolayer tungsten diselenide (WSe2) and monolayer molybdenum diselenide (MoSe2) — a team led by researchers at the University of California, Riverside, and Academia Sinica in Taiwan found a new class of electronic excited states called “moiré trions.”

“These trions, which are confined trion states in moiré potential wells — dips in potential energy — of the WSe2/MoSe2 structure, exhibit novel characteristics that differ markedly from those of conventional trions,” said Chun Hung (Joshua) Lui, an assistant professor in the Department of Physics and Astronomy at UC Riverside, who led the research.

The study, published June 2 in Nature, opens up new opportunities to develop trion-based quantum optical emitters and offers new approaches to explore moiré physics.

A trion is a bound state of two electrons and one hole, or one electron and two holes. A hole is the vacancy of an electron. Trions are the dominant light emitters and energy carriers in atomically thin semiconductors with extra charges. By applying external voltages, electric or magnetic fields, many characteristics of trions, such as their population, emission polarization, and motion, can be controlled. The trions’ versatile tunability makes them useful for light emitters, energy transport, and, potentially, information transmission.

In homogeneous semiconductors, trions are free to move and scatter, resulting in broad optical spectra. However, in moiré superlattices, trions get trapped near moiré potential wells and become moiré trions. Their confinement there prevents random scattering.

“We find the emission lines of moiré trions are more than 10 times sharper than those of free trions,” Lui said. “As the moiré trions are spatially isolated, they can emit single photons, making them a feasible optical source for quantum information technology.”

“Our work points to the possibility of generating two-dimensional arrays of trions in the periodic moiré potential wells,” said Erfu Liu, a postdoctoral researcher in Lui’s lab and the first author of the research paper. “Such 2D trion arrays may exhibit spatial coherence, reveal new physics, and find applications in laser technology.”

The research on moiré trions also reveals some new physics that can be useful in further study of moiré superlattices.

“Moiré superlattices are known to host many ‘minibands’ in their electronic energy band structure,” Lui said. “Such minibands are crucial for fascinating phenomena, such as superconductivity, in moiré superlattices. Due to the small energy spacing between these minibands, it is challenging to probe their detailed structure. Moiré trions inspire a new approach to probe the minibands.”

Liu explained that in conventional semiconductors with relatively simple electronic bands, a trion decays into the same final electronic state and shows just one emission line. But in moiré superlattices with multiple electronic minibands, a trion can decay into states in different minibands, he said.

“This will produce multiple emission lines, and the energy separation of these lines reflects the energy spacing of the minibands,” he added. “Our results support such novel behavior of moiré trions and suggest that moiré trion spectroscopy can be developed to probe electrons in moiré superlattices.”

Given the novel characteristics of moiré trions, Lui expects research on moiré trions will attract much attention.

“Indeed, related studies of moiré trions were also recently reported by researchers at Heriot-Watt University in the United Kingdom, Nanyang Technological University in Singapore, and Tsinghua University in China,” he said. “I believe moiré trion research will surge and lead to many exciting discoveries in the future.”

###

The research was supported by a National Science Foundation Faculty Early Career Development Award to Lui, additional NSF funds, a UC Riverside startup fund, the U.S. Department of Energy, and other sources.

Lui and Liu were joined in the study by theoretical physicist Yia-Chung Chang of Academia Sinica in Taiwan; graduate students Jeremiah van Baren and Matthew Wilson and faculty members Yongtao Cui and Nathaniel Gabor of UC Riverside; Elyse Barré and Tony Heinz of Stanford University and SLAC National Accelerator Laboratory; and Takashi Taniguchi and Kenji Watanabe of the National Institute for Materials Science in Tsukuba, Japan.

The research paper is titled “Signatures of moiré trions in WSe2/MoSe2 heterobilayers.”

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California’s diverse culture, UCR’s enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email [email protected].

Media Contact
Iqbal Pittalwala
[email protected]

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesComputer ScienceMaterialsMolecular PhysicsNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Railsignal

Rail industry urged to consider safety risks of space weather

December 11, 2023
Justin M. Watts, M.D.

Landscape for AML patients evolving rapidly as research discoveries advance new treatments

December 11, 2023

Cell therapy appears safe and effective for lymphoma in remission

December 11, 2023

ASH: Targeted oral therapy reduced disease burden and improved symptoms for patients with rare blood disorder

December 9, 2023
Please login to join discussion

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Photonic chip that ‘fits together like Lego’ opens door to semiconductor industry

    36 shares
    Share 14 Tweet 9
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • One of the largest magnetic storms in history quantified: Aurorae covered much of the night sky from the Tropics to the Polar Regions

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rail industry urged to consider safety risks of space weather

Landscape for AML patients evolving rapidly as research discoveries advance new treatments

Cell therapy appears safe and effective for lymphoma in remission

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In