• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tracking turtles with telemetry

Bioengineer by Bioengineer
March 14, 2019
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New model predicts where Eastern Pacific leatherback turtles travel to help protect endangered species

SOLOMONS (March 14, 2019)–A new model has been created that can forecast the location of Eastern Pacific leatherback turtles along the coast of Central and South America in an effort to decrease bycatch mortality of this critically endangered and ecologically important species.

Scientists from University of Maryland Center for Environmental Science have developed a unique model in collaboration with Dr. George Shillinger at the nonprofit Upwell Turtles that can predict on a monthly basis where Eastern Pacific leatherbacks are most likely to be residing.

“Upwell was created to address an unmet need in sea turtle conservation: protecting turtles in the ocean, where they spend most of their lives. By engaging new consistencies and improving access to predictive tools, like the South Pacific Turtle Watch, we can reduce the threats turtles face at sea from fisheries interactions,” said Upwell Executive Director Dr. George Shillinger.

A website called South Pacific Turtle Watch will be launched in coordination with this study as an online resource to educate the public on the importance of protecting leatherback turtles and to allow public access to the models predicting Eastern Pacific leatherbacks’ location.

By providing countries connected to this species with this information, scientists hope for a decrease in the accidental capture of Eastern Pacific leatherback turtles by fisheries, a threat that is partially responsible for the species’ 98 percent decline since the 1980s.

“A lot of managers and government agencies in Central and South America have been asking for something. They know leatherback populations are declining, they know fisheries have a role in it, so they have been thirsty for some information about what they can do so leatherbacks don’t disappear,” said study author Aimee Hoover of the University of Maryland Center for Environmental Science.

The decline in this leatherback turtle population is not all to blame on fisheries, but the purpose of this study was to produce data to inform potential management strategies to help both turtles and fishermen.

“Fishers aren’t targeting leatherbacks and other marine turtle species,” said Shillinger. “Incidental capture of turtles consumes time, damages equipment, and attracts unwanted negative attention. The South Pacific Turtle Watch tool will enable fishers to take proactive measures to reduce their bycatch, potentially reducing the risk of fisheries-turtle interactions within high-use turtle habitats.”

Leatherback turtles, which can live over 45 years, grow up to 2000 pounds, and reach lengths over 9 feet, prey exclusively upon gelatinous zooplankton. As such, leatherbacks play an important role as a keystone species in controlling jellyfish populations, which may be increasing as a result of changing climatic conditions and food web alterations from fisheries pressures. Jellyfish are not only important for the diet of these turtles but can damage fishermen’s nets and boats if they are caught in high numbers. It is estimated that less than 1,000 adult females of the species remain.

This study is the first segment of a two-part project hoping to improve leatherback turtle management strategies. This portion focused on modeling turtle residence time–how long the individual stays in one location–through satellite telemetry. Researchers are currently working on a complementary paper that will predict leatherbacks’ location through observer data collected from trained observers and volunteers on fishing vessels that encounter this critically endangered species.

Satellite telemetry technology allows for measurements and data to be collected remotely, which allows these free-moving creatures to be tracked from a distance for years once they are tagged with satellite transmitters. Turtles tagged in Costa Rica, Mexico and Peru were tracked for up to two years during a period spanning over two decades. In total, tracks from 45 different leatherbacks were used in the final analyses of this study.

The model predicts the seasonal route of leatherbacks, who migrate south from their nesting beaches into the South Pacific Gyre and then travel north to warmer temperatures near the equator during the winter, forming a circular pattern. Leatherback turtles are predicted to either travel down along the coast of Central America or travel out to the Pacific Ocean and south.

This statistically advanced model confirms previous tracks that have been developed and allows monthly models to be predicted based on current environmental conditions of leatherbacks’ habitat, such as temperature, upwelling and sea surface height. Upwelling is of particular interest to turtles as it refers to the process of nutrient rich waters being brought to the surface that leads to increased abundance of prey, like gelatinous zooplankton.

“To our knowledge we’re paving the way by incorporating dynamic environmental variables,” commented Hoover. “Every month we’re looking at a different temperature and environment over time to help model our predictions based on the changing environment this animal is experiencing.”

###

The paper, “Predicting residence time using a continuous-time discrete-space model of leatherback turtle satellite telemetry data” by Aimee Hoover, Dong Liang, and Helen Bailey of the University of Maryland Center for Environmental Science, George Shillinger of Upwell Turtles, and scientists from ProDelphinus, Facultad de Biologia Marina, Plymouth Marine Laboratory, Cornell University and MigraMar, was published in the journal Ecosphere.

UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE

The University of Maryland Center for Environmental Science leads the way toward better management of Maryland’s natural resources and the protection and restoration of the Chesapeake Bay. From a network of laboratories located across the state, UMCES scientists provide sound evidence and advice to help state and national leaders manage the environment, and prepare future scientists to meet the global challenges of the 21st century. http://www.umces.edu

UPWELL TURTLES

Upwell’s mission is to protect endangered sea turtles by reducing threats at sea, including fisheries bycatch, ship strikes, pollution, climate change, and other detrimental human activities. All sea turtle species worldwide are imperiled by detrimental human activities at sea. Conservationists have successfully protected many nesting beaches, but fewer females return to nest when populations decline due to high mortality at sea. Upwell mobilizes key constituencies and applies new technologies to improve protections for sea turtles where they spend most of their lives: in the ocean. http://www.upwell.org/

Media Contact
Amy Pelsinsky
[email protected]

Related Journal Article

https://www.umces.edu/content/tracking-turtles-telemetry
http://dx.doi.org/10.1002/ecs2.2644

Tags: BiologyEcology/EnvironmentMarine/Freshwater BiologyOceanographyTemperature-Dependent PhenomenaZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.