• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Titanium oxide nanotubes facilitate low-cost laser-assisted photoporation

Bioengineer by Bioengineer
January 25, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: COPYRIGHT (C) 2015 TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED

Overview:

A research team at the Department of Mechanical Engineering at Toyohashi University of Technology developed a nanosecond pulse laser-assisted photoporation method using titanium-oxide nanotubes (TNTs) for highly efficient and low-cost intracellular delivery. The proof of concept for the possibility of intracellular delivery after irradiation with nanosecond pulse laser on TNTs was validated. TNTs were formed on titanium sheets using the electrochemical anodization technique at different voltages and times. HeLa – human cervical cancer cells were cultured in the nanotubes and submerged in a solution of biomolecules. After cells were exposed to nanosecond pulse laser, we successfully delivered propidium iodide (PI) and fluorescent dextran into cells with high efficiency and cell viability.

Details:

A research team at the Department of Mechanical Engineering at Toyohashi University of Technology developed a nanosecond pulse laser-assisted photoporation method using titanium-oxide nanotubes (TNT) for highly efficient and low-cost intracellular delivery. The results of their research will be published in the Applied Surface Science on 30 March 2021, 148815. (Available online 24 December 2020).

The potential to deliver external molecules into living cells with high cell viability and transfection ability is of great interest in cell biology for diagnostics, drug delivery, and therapeutic development towards cell therapy and regenerative medicine. Over many years, drug delivery systems have advanced to attain more control of drug dosage, targeted delivery, and reduced side effects. These techniques can be classified as viral, physical, or chemical methods.

Among these methods, photoporation is emerging and has become popular for intracellular delivery in the last few years, owing to less invasiveness. In this method, gold nanoparticles, which absorb pulsed light, are dispersed in a solution to perforate the cells, however, the materials are expensive. It is desirable to use nanomaterials that are less expensive while maintaining high delivery efficiency and cell viability.

The research group designed and fabricated a cost-effective nanotube array for photoporation based intracellular delivery. TNTs were formed on titanium sheets at different voltages and times using the electrochemical anodization technique. X-ray photoelectron spectroscopy (XPS) revealed the presence of different titanium oxide species such as TiO2 and TixOy (TiO/Ti2O3/Ti3O5). TNTs formed by different anodization voltages and times had different concentrations of such oxidation species along with a minor quantity of Ti metal (Ti0). Owing to the formation of oxygen defects, nanotubes have quasi-metallic and metallic properties. These properties of the nanotubes may facilitate the intracellular delivery by various mechanisms after irradiation with a nanosecond pulse laser.

HeLa – human cervical cancer cells were cultured on TNTs and a biomolecular solution was introduced. After exposure to a 532-nm pulse laser on nanotubes, we successfully delivered propidium iodide (PI) and dextran into the HeLa – human cervical cancer cells with high efficiency and cell viability.

Possible principles of cell membrane perforation include thermal-mediated nanobubbles, photochemical induced reactive oxygen species (ROS), heat transfer from nanotubes to the cell membrane, and localized surface plasmon resonance high electromagnetic field enhancement on each nanotube. This leads to the formation of cavitational nanobubbles in each cell membrane-nanotube interface that may rapidly grow, coalesce, and collapse to cause explosions, resulting in cell membrane perforation, which enables biomolecules to be delivered from the outside to inside the cells. “The precise mechanism for the intracellular delivery on TNT-based photoporation is still unclear. Intracellular delivery may happen by the combination of the mechanisms,” says L. Mohan, a researcher, at Toyohashi University of Technology.

Moeto Nagai, the team leader, at Toyohashi University of Technology, believes that titanium oxide nanotubes could be a versatile and low-cost platform for intracellular delivery using pulsed laser. This device’s prominent features have parallel and controlled uniform delivery with high efficiency and cell viability and it is potentially applicable for cellular therapy and regenerative medicine.

###

Funding agency:

This work was supported by JSPS KAKENHI Grant Numbers 16H06074 and 20H02115 and JSPS Postdoctoral Fellowship for Research in Japan and by the Leading Initiative for Excellent Young Researchers, MEXT.

Reference:

Mohan, L., Srabani Kar, Ren Hattori, Miho Ishii-Teshima, Parthasarathi Bera, Sounak Roy, Tuhin Subhra Santra, Takayuki Shibata, and Moeto Nagai. “Can titanium oxide nanotubes facilitate intracellular delivery by laser-assisted photoporation?” Applied Surface Science, Volume 543 (2021) 148815:
http://www.ncbi.nlm.nih.gov/pubmed/148815. doi.org/10.1016/j.apsusc.2020.148815

Media Contact
Yuko Ito
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.apsusc.2020.148815

Tags: BiologyBiomechanics/BiophysicsBiotechnologyChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breast Cancer Molecular Markers in Iranians: A Review

Evaluating Healthcare Impact: A Comprehensive Overview

“Bioavailability of Umbelliferone: Metabolism & Extraction Insights”

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.