• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Tiny amino acid differences can lead to dramatically different enzymes

Bioengineer by Bioengineer
May 11, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr Ulrike Kappler

Just a few changes to an enzyme’s amino acids can be enough to dramatically change its function, enabling microbes to inhabit wildly different environments.

University of Queensland microbiologist Associate Professor Ulrike Kappler, led by an international team of researchers, made this discovery when investigating how Haemophilus influenzae bacteria colonise the human respiratory system.

“This disease-causing bacterium is supremely adapted to living in humans, so much so that they cannot survive anywhere else,” Dr Kappler said.

“It turns out that one enzyme, MtsZ, is the key player in this adaptation.

“But, surprisingly, close relatives of this protein, which promotes Haemophilus survival exclusively inside humans, help other species of bacteria to survive exclusively in lakes.

“How could closely related enzymes help one bacterial species live exclusively in humans and another to live only in lakes?

“The answer is a matter of minute amino acid changes.”

The research shows that a sequence difference of just three amino acids, a difference of less than 0.25 per cent of the MtsZ enzyme sequence, changes the functionality of the enzyme between bacteria living in lakes compared with those living in humans.

“It the natural world, tiny differences can lead to enormous functional changes – for example, humans and chimpanzees aren’t exactly the same despite being 99 percent genetically similar,” Dr Kappler said.

“We’re just now realising that this can be the case for enzymes as well.

“The slight changes in this enzyme enable the lake-dwelling bacteria to live on decaying algae and generate energy.

“Contrast this with Haemophilus, which uses MtsZ to scavenge amino acids from the human body and use them for bacterial growth and replication.

“Now that we understand the unique structure of this enzyme in Haemophilus, we hope to develop ways to inhibit its specific function and remedy chronic respiratory conditions associated with this bacterium.”

###

The paper is published in Journal of Biological Chemistry (DOI: 10.1016/j.jbc.2021.100672) and includes collaborating researchers from the USA, Germany and Australia.

Media Contact
A/Prof Ulrike Kappler
[email protected]

Original Source

https://scmb.uq.edu.au/article/2021/05/tiny-amino-acid-differences-can-lead-dramatically-different-enzymes

Related Journal Article

http://dx.doi.org/10.1016/j.jbc.2021.100672

Tags: BiochemistryBiologyCell BiologyChemistry/Physics/Materials SciencesMedicine/HealthMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phosphorylation Patterns in TCM Syndromes of Fatigue

Survey Reveals Latent TB in Eastern China’s Elderly

Factors Influencing Career Choices in Allied Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.