• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Time-lapse microscopy helps reveal brake mechanism in Streptomyces lifecycle

Bioengineer by Bioengineer
February 5, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Ruby O’Grady

Streptomyces are soil-dwelling bacteria that produce approximately two-thirds of the antibiotics in current clinical use.

The production of these antibiotics – used by the bacteria to fend off rivals – is coordinated as part of a complex life-cycle that ends in the formation of spores.

In the reproductive process of sporulation, bacteria enter a state of dormancy enhancing their survival in adverse conditions.

If researchers can understand how such a reproductive life-cycle is controlled, they may be able to exploit the production of clinically-useful antibiotics.

In a study published today in the American Society for Microbiology journal, mBio, researchers from the John Innes Centre reveal that a key protein acts as a “brake” to ensure the correct timing of sporulation in Streptomyces. This protein is a DNA-binding protein called BldC.

The team showed that when they removed the brake by removing the gene that encodes for the protein, sporulation occurs too early.

To understand how this BldC brake works, the team used a method called Chromatin-Immunoprecipitation-sequencing (ChIP-seq).

This technique allows researchers to use a specific antibody to identify where the BldC protein binds on the chromosome of Streptomyces. Another technique, called RNA-sequencing (RNA-seq) enabled them to see which genes are switched on or off by the BldC protein.

“This approach showed that the BldC brake works by keeping important genes required for sporulation switched off at a time when Streptomyces wants to grow non-reproductively,” explains first author Dr Matt Bush.

“To our surprise, these studies showed that as well as switching some genes off, BldC -can also switch other genes on. Because BldC binds at many positions on the chromosome, one possibility is that it also serves to organise the chromosome’s structure – it’s a nucleoid-associated protein).”

One question that remains to be answered in future studies is: how is the BldC-“brake” removed?

The study used the model organism, Streptomyces venezuelae (“Sven”). The main advantage of S. venezuelae is that unlike other model species, it sporulates in liquid as well as on solid agar-plates.

“This means we can use time-lapse fluorescence microscopy to make movies of Streptomyces undergoing the entire spore-to-spore life-cycle in real-time. We can put a fluorescent “tag” on a protein in the cell to see where it goes and when. Here we put a tag on the “FtsZ” protein that is required for the cell division event that produces spores.” says Dr Bush.

###

See the video explaining the brake mechanism: https://youtu.be/kI6El-ucnmc

Further information about the paper Bldc Delays Entry into Development to Produce a Sustained Period of Vegetative Growth in Streptomyces venezuelae:

  • This research was conducted in Professor Mark Buttner’s Lab in the Department of Molecular Microbiology, at the John Innes Centre.
  • The microscopy utilised the bioimaging facilities at the John Innes Centre (including electron microscopy conducted by Kim Findlay). Both ChIP-seq and RNA-seq generate a large amount of data that was processed by an expert Bioinformatician (Govind Chandra).
  • The work is part of a wider collaborative study with Maria Schumacher at Duke University, Durham, North Carolina, USA.
  • This work was funded by BBSRC grant BB/H006125/1 (to Mark Buttner) and by BBSRC Institute Strategic Programme Grant BB/J004561/1 to the John Innes Centre.

Media Contact
Adrian Galvin
[email protected]
01-603-450-238

Tags: BacteriologyBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyGeology/SoilMedicine/HealthMicrobiologyMolecular Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    63 shares
    Share 25 Tweet 16
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.