• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 24, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Through the nano hole: lego technique reveals the physics of DNA transport through nanopores

Bioengineer by Bioengineer
June 29, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kaikai Chen

A new technique established by a team of researchers from the University of Cambridge and the University of Massachusetts reveals the fundamental physics of how a polymer such as DNA threads through holes 10,000 times smaller than the width of a human hair.

Polymers are long, chain-like molecules which are everywhere in biology. DNA and RNA are polymers formed by many consecutive copies of nucleotides coupled together. When being transported within or between cells, these biological polymers must pass through nanometre-sized holes called “nanopores”.

This process also underlies a rapidly developing method for analysing and sequencing DNA called nanopore sensing.

The study, published in the journal Nature Physics, shows how the Cavendish-led team developed a new LEGO-like technique for assembling DNA molecules that have protruding bumps at specific locations along their length. By passing these DNA molecules through a nanopore and analysing simultaneous changes in the pattern of ion flow, the researchers determined with great precision how the speed of the DNA changes as it moves through.

The experimental results revealed a two-step process where the DNA speed initially slows down before accelerating close to the end of the translocation. Simulations also demonstrated this two-stage process and helped to reveal that the underlying physics of the process is determined by changing friction between the DNA and surrounding fluid.

“Our method for assembling LEGO-like molecular DNA rulers has given new insight into the process of threading polymers through incredibly small holes just a few nanometres in size,” explained Senior author Dr Nicholas Bell from Cambridge’s Cavendish Laboratory. “The combination of both experiments and simulations have revealed a comprehensive picture of the underlying physics of this process and will aid the development of nanopore-based biosensors. It is very exciting that we can now measure and understand these molecular processes in such minute detail.”

“These results will help improve the accuracy of nanopore sensors in their various applications, for instance localising specific sequences on DNA with nanometer accuracy or detecting diseases early with target RNA detection,” said lead author Kaikai Chen.

“The superior resolution in analysing molecules passing through nanopores will allow for low-error decoding of digital information stored on DNA. We are exploring and improving the utility of nanopore sensors for these applications.”

###

Reference:
Chen, K., Jou, I., Ermann, N. et al. ‘Dynamics of driven polymer transport through a nanopore.’ Nature Physics (2021). DOI: 10.1038/s41567-021-01268-2

Media Contact
Vanessa Bismuth
[email protected]

Original Source

https://www.phy.cam.ac.uk/news/through-nano-hole-lego-technique-reveals-physics-dna-transport-through-nanopores

Related Journal Article

http://dx.doi.org/10.1038/s41567-021-01268-2

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Effects of aging on the brain in type 2 diabetes

Type 2 diabetes accelerates brain aging and cognitive decline

May 24, 2022
While the fetal clock develops, mom’s behavior tells the time

While the fetal clock develops, mom’s behavior tells the time

May 24, 2022

Wax worm saliva contains enzymes capable of breaking down plastics

May 24, 2022

Stem cell cloning experts unraveling cystic fibrosis

May 24, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsUrbanizationVaccineVaccinesUrogenital SystemVehiclesWeaponryViolence/CriminalsZoology/Veterinary ScienceUniversity of WashingtonVirusVirology

Recent Posts

  • Aging (Aging-US) sponsors Systems Aging Gordon Research Conference
  • Type 2 diabetes accelerates brain aging and cognitive decline
  • While the fetal clock develops, mom’s behavior tells the time
  • Data contradict fears of COVID-19 vaccine effects on pregnancy and fertility
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....