• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Thinking with your stomach? The brain may have evolved to regulate digestion

Bioengineer by Bioengineer
April 6, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba find that sea urchin larvae use light to control digestion

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Many life forms use light as an important biological signal, including animals with visual and non-visual systems. But now, researchers from Japan have found that neuronal cells may have initially evolved to regulate digestion according to light information.

In a study published this month in BMC Biology, researchers from the University of Tsukuba have revealed that sea urchins use light to regulate the opening and closing of the pylorus, which is an important component of the digestive tract.

Light-dependent systems often rely on the activity of proteins in the Opsin family, and these are found across the animal kingdom, including in organisms with visual and non-visual systems. Understanding the function of Opsins in animals from different taxonomic groups may provide important clues regarding how visual/non-visual systems evolved in different creatures to use light as an external signal. The function of Opsins in the Ambulacraria groups of animals, which include sea urchins, has not been characterized, something the researchers aimed to address.

“The functions of eyes and visual systems have been well-characterized,” says senior author of the study Professor Shunsuke Yaguchi. “However, the way in which light dependent systems were acquired and diversified throughout evolution is unclear especially in deuterostomes because of the lack of data regarding the signaling pathway in the Ambulacraria group.”

To address this, the researchers tested whether light exposure caused changes in digestive tract activity in sea urchins. They then conducted micro-surgical and genetic knockdown experiments to test whether Opsin cells in the sea urchin digestive system mediated the effect of light.

“The results provided new information about the role of Opsins in sea urchins,” explains Professor Yaguchi. “Specifically, we found that stimulation of sea urchin larvae via light caused changes in digestive system function, even in the absence of food stimuli.”

Furthermore, the researchers identified brain serotonergic neurons near the Opsin-expressing cells that were essential for mediating the light-stimulated release of nitric oxide, which acts as a neurotransmitter.

“Our results have important implications for understanding the process of evolution, specifically, that of light-dependent systems controlled via neurotransmitters,” says Professor Yaguchi.

The data indicate that an early function of brain neurons may have been the regulation of the digestive tract in our evolutionary ancestors. Because food consumption and nutrient absorption are critical to survival, the development of a sophisticated brain-gut regulatory system may have been a major step in animal evolution.

###

The article, “Sea urchin larvae utilize light for regulating the pyloric opening” was published in BMC Biology at DOI:10.1186/s12915-021-00999-1

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1186/s12915-021-00999-1

Tags: BiologyMarine/Freshwater BiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Climate Change Pushes North Pacific Storms Poleward

January 8, 2026

RG3 and Cantharidin Combat Liver Cancer Together

January 8, 2026

Chemotherapy’s Impact on Ovarian Health: Emerging Solutions

January 8, 2026

Protecting Immigrant Maternal Health Through Birthright Citizenship

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    153 shares
    Share 61 Tweet 38
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    143 shares
    Share 57 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    45 shares
    Share 18 Tweet 11
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Climate Change Pushes North Pacific Storms Poleward

RG3 and Cantharidin Combat Liver Cancer Together

Chemotherapy’s Impact on Ovarian Health: Emerging Solutions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.