• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 15, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

The ‘worm’ holds the key to treating epilepsy

Bioengineer by Bioengineer
September 28, 2016
in Neuroscience
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Current methods to control epilepsy, which affects 1 in 26 Americans, are not only inefficient but haven’t improved in more than 150 years when the first anticonvulsant drug was developed. Treatment options include invasive surgeries and a combination of antiepileptic drugs that surprisingly don’t work in more than 30 percent of patients. Noninvasive treatments are limited for easing symptoms partially due to the complexity of the disorder and lack of knowledge of specific molecular malfunctions. In recent years, fewer and fewer drugs have been introduced into the market most likely due to exhausted screening techniques and less efficient methods for predicting drug effectiveness.

Monica Risley, co-lead author and a Ph.D. student in FAU’s Integrative Biology and Neuroscience program, as well as a student in the new International Max Planck Research School in Brain and Behavior. Credit: Florida Atlantic University
Monica Risley, co-lead author and a Ph.D. student in FAU’s Integrative Biology and Neuroscience program, as well as a student in the new International Max Planck Research School in Brain and Behavior.
Credit: Florida Atlantic University

Researchers from Florida Atlantic University, in collaboration with The Scripps Research Institute, have opened up the possibilities for rapid drug screens to treat seizures in the near future by developing the smallest whole-animal electroconvulsive seizure model using a microscopic nematode worm. Electroshock is one of the most common experimental models of acute and chronic seizure in mammals to study epilepsy. The researchers have been able to demonstrate, that just like rodents and even fruit flies, the tiny 1 millimeter C.elegans worm also can undergo an electroconvulsive seizure.

The study, “Modulating Behavior in C.elegans Using Electroshock and Antiepileptic Drugs,” just published in PLOS One, has led the researchers to build on the current animal models for inducing seizures via electroconvulsion in the genetically modifiable C.elegans that only has 302 brain cells called neurons. C.elegans has been used for decades as a model animal to study the genetic and molecular underpinnings of neurological disorders through a number of techniques including bio imaging, electrophysiology and behavior.

For the study, researchers treated the worms with several antiepileptic drugs approved for human use, which improved recovery from electroshock seizures worsened by genetic or pharmacological pro-convulsants.

“We were very excited to discover that when we used a typical genetic mutation that was more susceptible to electroconvulsive seizures, we were able to actually rescue these worms by treating them with FDA approved human antiepileptic drugs beforehand,” said Monica Risley, co-lead author and a Ph.D. student in FAU’s Integrative Biology and Neuroscience program, as well as a student in the new International Max Planck Research School in Brain and Behavior.

Because this new method is rapid, inexpensive and has shown relevance with existing antiepileptic drugs, the C.elegans electroshock assay developed at FAU has the potential to become an efficient screening tool for human seizure therapeutics.

“The fact that we can induce a short seizure, of approximately 1 to 3 minutes long, with the exact timing of an electrical pulse, and that these worms react well to antiepileptic drugs, makes this new assay a perfect model for high-speed drug screens in multi-welled plate readers,” said Ken Dawson-Scully, Ph.D., corresponding author and associate professor in the Department of Biological Sciences and associate director of the FAU Brain Institute.

Dawson-Scully notes that the ability to use C.elegans in high speed robotic drug testing facilities like those at Scripps Florida, will enable testing of hundreds of thousands of compounds, even in combinations, using this automated process. “The cost to run high throughput testing for antiepileptic drug candidates would cost a fraction in time and money compared to the experiments available today,” said Dawson-Scully.

Web Source: Florida Atlantic University. Original written by Gisele Galoustian. N

Journal Reference:

Monica G. Risley, Stephanie P. Kelly, Kailiang Jia, Brock Grill, Ken Dawson-Scully. Modulating Behavior in C. elegans Using Electroshock and Antiepileptic Drugs. PLOS ONE, 2016; 11 (9): e0163786 DOI: 10.1371/journal.pone.0163786

The post The ‘worm’ holds the key to treating epilepsy appeared first on Scienmag.

Share21Tweet7Share2ShareShareShare1

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Next Post
blank

Surprising findings on deadly diarrhea suggest ways to save children’s lives

Lights, camera, action: New catheter lets doctors see inside arteries for first time

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

cancerGeneticsClimate ChangeChemistry/Physics/Materials SciencesPublic HealthTechnology/Engineering/Computer ScienceBiologyMaterialsInfectious/Emerging DiseasesCell BiologyEcology/EnvironmentMedicine/Health

Recent Posts

  • Howard University professor to receive first Joseph A. Johnson Award
  • Nanodiamonds feel the heat
  • Special interests can be assets for youth with autism
  • Controlling chemical catalysts with sculpted light
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In