• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The story of thalidomide continues

Bioengineer by Bioengineer
October 8, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Molecular basis of drug’s effects on limb and ear development revealed

IMAGE

Credit: Nature Chemical Biology


An international study co-authored by researchers at Tokyo Institute of technology (Tokyo Tech) and Tokyo Medical University has unveiled a detailed view of how thalidomide, one of the most notorious drugs ever developed, causes abnormalities in limb and ear development. The findings may contribute to the re-emergence of safe, or non-teratogenic, thalidomide-derived drugs as a treatment for cancer and inflammatory diseases.

Researchers in Japan and Italy have deepened understanding of the way in which thalidomide causes developmental abnormalities at the molecular level.

Thalidomide has a reputation as one of the most potent substances that can cause birth defects. Originally used in the late 1950s as a treatment for morning sickness, evidence in the early 1960s linked thalidomide to abnormalities including shortened limbs and defective organs, which led to its ban around the world.

Remarkably, based on subsequent findings that highlighted thalidomide’s anti-inflammatory and other beneficial properties, the drug has become a major example of one that can be repurposed to treat conditions such as leprosy and multiple myeloma, a type of blood cancer.

“The thalidomide tragedy is not an open-and-shut case in medical history, but is ongoing,” explains biochemist Yuki Yamaguchi of Tokyo Tech, “as new thalidomide babies have been born after its re-approval in around 2000.”

“But we now know that thalidomide and its derivative drugs are highly effective and are associated with few side-effects, except for the teratogenic effects on the fetus, unlike many other conventional anti-cancer agents,” he points out. “Therefore, teratogenicity remains a big hurdle for wider application of these promising drugs.”

To investigate the mechanisms behind thalidomide activity in more detail, Yamaguchi collaborated with Hiroshi Handa of Tokyo Medical University, Luisa Guerrini of Universita degli Studi di Milano, Italy, and others to conduct developmental studies using zebrafish as a model organism. This collaboration set out to explore Guerrini’s hunch that the p63 family of proteins might be critically involved. In 2010, a team led by Handa and Yamaguchi achieved a breakthrough by identifying cereblon as a key protein through which thalidomide initiates its adverse or teratogenic effects. (See Molecular Basis of Brain Dysfunction and Embryo Malformation Associated with Thalidomide.)

Now, the latest study published in Nature Chemical Biology shows that after binding to cereblon, thalidomide causes damage to fins (corresponding to limbs) and to otic vesicles (corresponding to ears) by inducing the breakdown of two types of p63 proteins. Specifically, the study suggests that the breakdown of ΔNp63α results in limb defects, while that of TAp63α leads to ear defects, as shown in Figure 1.

Understanding how cereblon works to mediate the effects of thalidomide could transform the way drugs are developed — moving away from serendipitous discovery and towards rational molecular design. “The change would be like a shift from looking for a needle in a haystack to carving a needle out of bone,” Yamaguchi notes.

“It’s likely that we will see the development of new thalidomide-based drugs without teratogenic effects in the near future,” he says.

###

Authors:

Shimizu[1,5], Kazuhide Asakawa[1,5], Yuki

Yamaguchi[3], Takumi Ito[1,4,5], Luisa Guerrini[2] and Hiroshi Handa[1,5]

Affiliations

[1] Department of Nanoparticle Translational Research, Tokyo Medical University

[2] Department of Biosciences, Universita degli Studi di Milano

[3] School of Life Science and Technology, Tokyo Institute of Technology

[4] PRESTO, JST

[5] Present Address: Department of Chemical Biology, Tokyo Medical University

Related links:

Department of Chemical Biology, Handa Lab http://www.tokyo-med.ac.jp/nanoparticle/engindex.html

Molecular Basis of Brain Dysfunction and Embryo Malformation Associated with Thalidomide https://www.titech.ac.jp/english/news/2019/044284.html

Yamaguchi Lab
http://yamaguchi.bio.titech.ac.jp/english/

About Tokyo Medical University:

Established in 1916, Tokyo Medical University can now boast more than 100 years of tradition. The spirit of this school is enshrined in the words “Self-reliance and Self-study”. This describes the type of medical professional to which we aspire: one resolved to undertake honest self-appraisal, think for themselves, and ceaselessly pursue their studies. With this in mind, our mission is to foster excellence in medical professionals as partners in health in line with our school motto of “Justice, Friendship, and Service”.

About Tokyo Institute of Technology:

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.

https://www.titech.ac.jp/english/

Media Contact
Emiko Kawaguchi
[email protected]
81-357-342-975

Original Source

https://www.titech.ac.jp/english/news/2019/045375.html

Related Journal Article

http://dx.doi.org/10.1038/s41589-019-0366-7

Tags: BiologyBiomechanics/BiophysicsCell BiologyDevelopmental/Reproductive BiologyMedicine/HealthPhysiology
Share13Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

Antenatal Origins and Treatments of Neurodevelopment in CHD

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.