• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The secret of motivation

Bioengineer by Bioengineer
September 26, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How neural circuits drive hungry individuals to peak performance

IMAGE

Credit: Anja Friedrich / TUM

Success is no accident: To reach your goal you need perseverance. But where does the motivation come from? An international team of researchers led by scientists from the Technical University of Munich (TUM) has now identified the neural circuit in the brain of fruit flies which makes them perform at their best when searching for food.

The odor of vinegar or fruit lets fruit flies walk faster. To reach the food, they run until exhaustion. But despite their efforts, they do not get any closer to their goal: In the set-up at the laboratory of the TUM School of Life Sciences Weihenstephan the upper bodies of the tiny flies are fixed in place and the flies are running without getting anywhere.

With the movement of their legs they are turning a ball which is floating on an air cushion. The turning speed shows neurobiologist professor Ilona C. Grunwald Kadow how much effort the fruit fly is putting into finding food.

“Our experiments show that hungry individuals keep increasing their performance – they run up to nine meters per minute. Fruit flies which are full give up much faster”, the researcher reports. “This proves that even simple organisms show stamina and perseverance – up to now, these qualities were thought to be reserved for humans and other higher organisms.”

A neural circuit controls perseverance

Together with Julijana Gjorgjieva, Professor for Computational Neuroscience at TUM and group leader at the Max Planck Institute for Brain Research in Frankfurt, as well as an international and interdisciplinary team of researchers, Grunwald Kadow has now identified a neural circuit in the brain of the small flies, which controls this kind of perseverance.

It is not a coincidence that the researchers investigated the motivation of fruit flies. “The brains of these flies have a million times fewer nerve cells than human brains. This makes it a lot easier to find out what an individual neuron does and how”, the professor explains. “In this way, we are able to understand the principles of neural circuits which also form the basis for the function of complex brains.”

The power of neurons

To identify the neural circuit which is responsible for motivation, the team used various techniques: First, a mathematical model was created which simulates the interaction of external and internal stimuli – for example the odor of vinegar and hunger.

In the next step, the neuroscientists of TUM identified the network of interest in the brain of the fruit fly in cooperation with colleagues in the USA and Great Britain. This was achieved with the help of electron microscopy as well as in-vivo imaging and behavioral experiments.

The result: The neural circuit of interest is located in the learning and memory center of the fly brain. It is controlled by the two neurotransmitters dopamine and octopamine, which is related to the human noradrenaline. Dopamine increases the activity of the circuit, i. e. increases motivation; octopamine reduces the willingness to make an effort.

“Since these neurotransmitters and the corresponding circuits also exist in the brains of mammals, we assume that similar mechanisms decide whether to continue or to stop”, concludes the neurobiologist. In the long term, the researchers hope that their findings will help to understand why the interaction of neurons and messenger substances in the brain, for example, in addictions gets out of control.

###

The neural circuits were identified by researchers from TUM School of Life Sciences, Max-Planck Institute of Neurobiology, Max-Planck-Institute for Brain Research, the University of Cambridge (UK), the Janelia Research Campus (USA) and the MRC Laboratory of Molecular Biology (UK).

The research project was funded by Max-Planck-Gesellschaft, European Research Council (ERC), Marie Curie Training Network, Deutsche Forschungsgemeinschaft (DFG), Howard Hughes Medical Institute (USA) and Medical Research Council (UK). Julijana Gjorgjieva is tenure track professor in the Max Planck@TUM program of the Technical University of Munich.

Publication:

Sercan Sayin, Jean-Francois De Backer, K.P. Siju, Marina E. Wosniack, Laurence P. Lewis, Lisa-Marie Frisch, Benedikt Gansen, Philipp Schlegel, Amelia Edmondson-Stait, Nadiya Sharifi, Corey B. Fisher, Steven A. Calle-Schuler, J. Scott Lauritzen, Davi D. Bock, Marta Costa, Gregory S.X.E. Jefferis, Julijana Gjorgjieva, Ilona C. Grunwald Kadow

A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila
Neuron 104, 1-15, November 6, 2019 – DOI: 10.1016/j.neuron.2019.07.028

Media Contact
Dr. Andreas Battenberg
[email protected]

Original Source

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35707/

Related Journal Article

http://dx.doi.org/10.1016/j.neuron.2019.07.028

Tags: BiochemistryBiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesDecision-making/Problem SolvingMedicine/HealthneurobiologyNeurochemistrySocial/Behavioral ScienceSports Medicine
Share13Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sexual Dimorphism in UGT Deficiency: New Insights Revealed

Revolutionary Sandwich Composite Enhances Building Load Capacity

Dual-Target Fusion Protein Enhances Antiangiogenic Tumor Effects

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.