• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, June 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

The search for the origin of a rare tumor points to a poorly studied mechanism as a new would-be hot topic in cancer research: ‘succinylation’

Bioengineer by Bioengineer
May 9, 2023
in Cancer
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the CNIO (Spanish National Cancer Research Center) have discovered that one of the causes for the rare tumor pheochromocytoma-paraganglioma is the interruption of a very specific step in the production of some proteins, called succinylation. This is a relatively poorly studied mechanism that may be involved in more diseases than previously thought, according to the new results, which are published in the journal Cancer Communications.

Cancer Communications. The search for the origin of a rare tumor points to a poorly studied mechanism as a new would-be hot topic in cancer research: ‘succinylation’

Credit: Laura M. Lombardía. CNIO

  • The authors of the finding, from the CNIO, wanted to find out why a specific mutation caused rare tumor pheochromocytoma- paraganglioma in five patients.
  • Succinylation is one of the last steps in the production of some proteins. “Its study is going to be very important in cancer and other diseases,” say Alberto Cascón and Sara Mellid, lead authors.
  • The work identifies a new therapeutic target to treat diseases caused by failures in succinylation.

Researchers at the CNIO (Spanish National Cancer Research Center) have discovered that one of the causes for the rare tumor pheochromocytoma-paraganglioma is the interruption of a very specific step in the production of some proteins, called succinylation. This is a relatively poorly studied mechanism that may be involved in more diseases than previously thought, according to the new results, which are published in the journal Cancer Communications.

The researchers find that faults in the DLST protein prevent succinylation, and that DLST is therefore “a promising therapeutic target for treating diseases linked to dysregulated succinylation,” they write in the paper.

A mutation causing rare tumor pheochromocytoma-paraganglioma

Proteins are the building blocks of the organism, the structural component of tissues and organs. They are also the nanomachines that carry out all biological functions. There are tens of thousands of different human proteins, and each one has its tasks: transporting oxygen in the blood, contracting muscles, reading DNA… even manufacturing other proteins. When cancer develops, it always implies that there are faulty proteins.

Alberto Cascón and Sara Mellid, from the CNIO Hereditary Endocrine Cancer Group, wanted to understand what was going wrong in five specific patients with pheochromocytoma-paraganglioma. The incidence of these rare tumors, actually considered a single disease, is three to eight cases per million inhabitants each year.

Over the last decade, this CNIO group has discovered five of the 22 genes implicated in the disease so far.

In the case of the five patients whose analysis has led to the new result the researchers knew the causative mutation, because they discovered it themselves in 2019. But they did not know what was going wrong in the cells because of that mutation.

Malfunctions in cell metabolism, pseudohypoxia and cancer

Proteins are made according to instructions written in the genes; mutations amount to erroneous instructions. The mutations studied by Cascón and Mellid affect the DLST protein, involved in cell metabolism. It is known that when there are faults in some proteins related to cell metabolism, pseudohypoxia can occur, a situation in which tumor cells increase glycolysis as a way of obtaining energy, even in the presence of oxygen, which is to their advantage.

CNIO researchers discovered that the mutated DLST protein effectively generates this cancer-friendly pseudohypoxia by preventing other proteins from being manufactured correctly. Specifically, it prevents other proteins from being succinylated.

Succinylation: embellishing proteins

Succinylation is one of the last steps in the manufacture of some proteins. Genetic information dictates which pieces make up the protein and in what order they should be arranged; but after the pieces are assembled, like beads on a necklace, they often need to be further completed with specific molecules, which are added like brooches to the necklace. These embellishments change the function of the proteins.

In succinylation, the chemical group succinyl is added to the protein. This mechanism is still poorly studied, “but it seems that it will be very important for protein function and is beginning to be studied extensively, not only in cancer, but also in other diseases,” say Cascón and Mellid.

Lack of succinylation leads to cancer

“We see that when the DLST protein has the mutations that we have found in PPGL patients, succinylation does not occur, and that causes many key proteins for cell function to be hyposuccinylated,” they explain.

“Proteins not being properly succinylated is what we propose as one of the mechanisms that could give rise to the tumor. Hyposuccinylated proteins in pheochromocytoma and paraganglioma are involved in several processes, and when they do not function correctly, pseudohypoxia is triggered, which favors tumor cells,” say Sara Mellid and Alberto Cascón.



Journal

Cancer Communications

DOI

10.1002/cac2.12427

Method of Research

Experimental study

Subject of Research

Cells

Article Title

DLST mutations in pheochromocytoma and paraganglioma cause proteome hyposuccinylation and metabolic remodeling

Article Publication Date

4-May-2023

COI Statement

No conflict of interest

Share12Tweet8Share2ShareShareShare2

Related Posts

Dr. Alex Herrera

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

June 4, 2023
Ana Oaknin, Principal Investigator of the Vall d’Hebron Institute of Oncology’s (VHIO) Gynecological Malignancies Group

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

June 3, 2023

ASCO: Targeted therapy induces responses in HER2-amplified biliary tract cancer

June 3, 2023

For advanced, HER2-amplified bile duct cancers, antibody treatment trial shows promising results

June 2, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In