• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The phenological index

Bioengineer by Bioengineer
October 3, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A tool to understand how ecosystems are responding to a changing climate

IMAGE

Credit: Love et al., 2019

As climate change accelerates, recording shifts in plant flowering times is critical to understanding how changes in climate will impact ecosystem interactions. Currently, when researchers reconstruct historical flowering times using dried herbarium specimens, they estimate first or peak flowering time using the day of the year (DOY) of plant collection as a proxy. Because herbarium specimens are collected at many different stages of flowering and fruiting (called “phenological” stages), this practice of using the day of collection creates shaky data that limits our ability to estimate how ecosystems will respond to a shifting climate.

In research presented in a recent issue of Applications in Plant Sciences, Natalie Love, M.S., and colleagues developed a new quantitative measure of phenological status, called the “phenological index,” to improve scoring of developmental stage in herbarium specimens. In their paper, the team presents a protocol for deriving the phenological index of herbarium specimens in an automated way, using the free software package ImageJ.

“Herbarium specimens can be collected at a wide range of phenological stages from all buds to all fruits, so the assumption that specimens are collected on their day of year of first flower or peak flower is inaccurate,” said Love, corresponding author on the manuscript and Ph.D. student at the University of California Santa Barbara. “This could be especially problematic if models constructed with these datasets are used to predict the day of year of onset of a particular assumed phenophase, which is one of the ultimate goals of studying phenology.”

“Our method allows researchers to be able to predict the day of year of onset of a specific phenophase (like peak flowering), rather than assuming that DOY is equivalent to peak flowering or the day of first flower,” said Love. Her team tested their new approach in Streptanthus tortuosus, a small plant in the mustard family that is native to the mountains of California. They found that plugging in the phenological index measures into climate models changed their outcomes. “Using our model would actually predict a higher degree of phenological advancement in response to climate change,” said Love.

The phenological index and associated protocols are being rolled out at the same time as a digitization project targeting millions of California herbarium specimens, called Capturing California’s Flowers. “In advance of the completion of this massive effort, we wanted to provide the phenological research community with new and improved methods with which to analyze the millions of additional imaged specimens that will soon be available to researchers,” said Love.

The tools they present here will help make sense of this treasure trove of data, and give phenological researchers well beyond California the metrics needed to predict ecological responses to a changing world.

###

Natalie L. Rossington Love, Isaac W. Park, and Susan J. Mazer. 2019. A new phenological metric for use in pheno-climatic models: A case study using herbarium specimens of Streptanthus tortuosus. Applications in Plant Sciences 7(7): e11276. https://doi.org/10.1002/aps3.11276

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America, a nonprofit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. APPS is available as part of the Wiley Online Library.

For further information, please contact the APPS staff at [email protected].

Media Contact
Beth Parada
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/aps3.11276

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bee Genome Study Uncovers Transposable Element Evolution

November 5, 2025
blank

Single-Particle Genomics Reveals Abundant Unusual Marine Viruses

November 5, 2025

Revolutionary Brain Implants Offer Therapy Without Surgery

November 5, 2025

Exploring Histone Acetyltransferase Genes in Bursaphelenchus xylophilus

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Nomogram Predicts Lymphoma Blood Clots

Key Data Variables in Neonatal Transport Uncovered

Plant Polyphenols: Key Players in Ovarian Aging

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.