• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The magic angle of twisted graphene

Bioengineer by Bioengineer
February 23, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: JC Charlier UCLouvain

Graphene, a two-dimensional material composed exclusively of carbon, has revealed extraordinary properties, including thermal and electrical conductivity, transparency, and flexibility. When combined, these properties become particularly interesting in the age of touch screens and flexible electronics! ‘Unlike 3D materials, graphene has a height reduced to the ultimate dimension of the atom. It’s therefore a carbon atom plane,’ explains Prof. Jean-Christophe Charlier, a specialist in nanoscopic physics at the Institute of Condensed Matter and Nanosciences of UCLouvain.

In a study published in Nature, the scientist and his team dissected the behaviour of electrons when two layers of graphene superimposed at an angle of 1.1 degrees (the so-called ‘magic angle’) produce a moirĂ© effect. Well known to photographers, painters and fashion specialists, this optical effect consists of a figure composed of dark and light domains resulting from the superposition of two gratings. ‘When two layers of graphene are superimposed with this magic angle, they give rise to superconductivity. They therefore conduct electricity without any resistance,’ Prof. Charlier says. This property is more than useful for transporting electricity without loss of energy. ‘We’ve shown that the two graphene planes twisted in this way interact and lead to a restructuring of the atoms into domains where electrons are trapped and localised in space.’ However, by definition, electrons tend to move away from one other, repelled by their respective negative charges. ‘To limit their interactions, the electrons can organise themselves by aligning their spin, which gives them magnetic properties, or by forming an insulator, or by pairing up to produce superconductivity.’ It’s the last that occurs in the case of bilayer graphene twisted at the magic angle. In addition, the scientists have shown that phonons, atom particles responsible for vibrations in solid materials, are also trapped in the domains formed by the twisted graphene.

The synthesis of new 2D materials and the observation of the extraordinary properties which can be derived from them have led to a twistronics craze driven by the idea of one day being able to create structures with the desired properties ‘brick by brick’, or to extrapolate knowledge acquired on simple materials, such as graphene, to more complex materials, allowing for better control or performance of superconducting systems in everyday life. Examples include the superconducting coils in Japanese magnetic levitation trains (Maglev), which levitate above the rails, or the superconducting magnet in magnetic resonance imaging (MRI) equipment.

###

Media Contact
Jean-Christophe Charlier
[email protected]

Original Source

https://uclouvain.be/fr/chercher/actualites/l-angle-magique-du-graphene-bicouche.html

Related Journal Article

http://dx.doi.org/10.1038/s41586-021-03252-5

Tags: Chemistry/Physics/Materials SciencesElectromagneticsMaterialsNanotechnology/MicromachinesSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Lab-Grown Slow-Twitch Muscles Achieved Through Soft Gel Innovation

Lab-Grown Slow-Twitch Muscles Achieved Through Soft Gel Innovation

November 3, 2025
Birch Leaves and Peanuts Transformed into Cutting-Edge Laser Technology

Birch Leaves and Peanuts Transformed into Cutting-Edge Laser Technology

November 3, 2025

Scientists Develop Photoswitchable Exceptional Points Using Bound States in the Continuum

November 3, 2025

Chemists Uncover Clues to the Cosmic Origins of Buckyballs

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ring-Opening Linker Boosts HER2-Targeting ADCs Safety

Lab-Grown Slow-Twitch Muscles Achieved Through Soft Gel Innovation

Emulsification and Gelation in Plant-Based Cream Cheese

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.