• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

“The machine as extension of the body”

Bioengineer by Bioengineer
December 11, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Prof. Gordon Cheng on the challenges of fusing robotics and neuroscience

IMAGE

Credit: Astrid Eckert / TUM

Combining neuroscience and robotic research has gained impressive results in the rehabilitation of paraplegic patients. A research team led by Prof. Gordon Cheng from the Technical University of Munich (TUM) was able to show that exoskeleton training not only helped patients to walk, but also stimulated their healing process. With these findings in mind, Prof. Cheng wants to take the fusion of robotics and neuroscience to the next level.

Prof. Cheng, by training a paraplegic patient with the exoskeleton within your sensational study under the “Walk Again” project (LINK!), you found that patients regained a certain degree of control over the movement of their legs. Back then, this came as a complete surprise to you …

… and it somehow still is. Even though we had this breakthrough four years ago, this was only the beginning. To my regret, none of these patients is walking around freely and unaided yet. We have only touched the tip of the iceberg. To develop better medical devices, we need to dig deeper in understanding how the brain works and how to translate this into robotics.

In your paper published in Science Robotics this month, you and your colleague Prof. Nicolelis, a leading expert in neuroscience and in particular in the area of the human-machine interface, argue that some key challenges in the fusion of neuroscience and robotics need to be overcome in order to take the next steps. One of them is to “close the loop between the brain and the machine” – what do you mean by that?

The idea behind this is that the coupling between the brain and the machine should work in a way where the brain thinks of the machine as an extension of the body. Let’s take driving as an example. While driving a car, you don’t think about your moves, do you? But we still don’t know how this really works. My theory is that the brain somehow adapts to the car as if it is a part of the body. With this general idea in mind, it would be great to have an exoskeleton that would be embraced by the brain in the same way.

How could this be achieved in practice?

The exoskeleton that we were using for our research so far is actually just a big chunk of metal and thus rather cumbersome for the wearer. I want to develop a “soft” exoskeleton – something that you can just wear like a piece of clothing that can both sense the user’s movement intentions and provide instantaneous feedback. Integrating this with recent advances in brain-machine interfaces that allow real-time measurement of brain responses enables the seamless adaptation of such exoskeletons to the needs of individual users. Given the recent technological advances and better understanding of how to decode the user’s momentary brain activity, the time is ripe for their integration into more human-centered or, better ? brain-centered ? solutions.

What other pieces are still missing? You talked about providing a “more realistic functional model” for both disciplines.

We have to facilitate the transfer through new developments, for example robots that are closer to human behaviour and the construction of the human body and thus lower the threshold for the use of robots in neuroscience. This is why we need more realistic functional models, which means that robots should be able to mimic human characteristics. Let’s take the example of a humanoid robot actuated with artificial muscles. This natural construction mimicking muscles instead of the traditional motorized actuation would provide neuroscientists with a more realistic model for their studies. We think of this as a win-win situation to facilitate better cooperation between neuroscience and robotics in the future.

You are not alone in the mission of overcoming these challenges. In your Elite Graduate Program in Neuroengineering, the first and only one of its kind in Germany combining experimental and theoretical neuroscience with in-depth training in engineering, you are bringing together the best students in the field.

As described above, combining the two disciplines of robotics and neuroscience is a tough exercise, and therefore one of the main reasons why I created this master’s program in Munich. To me, it is important to teach the students to think more broadly and across disciplines, to find previously unimagined solutions. This is why lecturers from various fields, for example hospitals or the sports department, are teaching our students. We need to create a new community and a new culture in the field of engineering. From my standpoint, education is the key factor.

###

Media Contact
Christine Lehner
[email protected]

Original Source

https://www.tum.de/nc/en/about-tum/news/press-releases/details/36357/

Related Journal Article

http://dx.doi.org/10.1126/scirobotics.abd1911

Tags: BiotechnologyDisabled PersonsHardwareMechanical EngineeringneurobiologyRehabilitation/Prosthetics/Plastic SurgeryRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Scientists shed light on how and why some people report “hearing the dead”

January 18, 2021
IMAGE

Changing diets — not less physical activity — may best explain childhood obesity crisis

January 18, 2021

Better diet and glucose uptake in the brain lead to longer life in fruit flies

January 16, 2021

Rapid blood test identifies COVID-19 patients at high risk of severe disease

January 15, 2021
Next Post
IMAGE

High-tech fixes for the food system could have unintended consequences

IMAGE

Baricitinib plus Remdesivir shows promise for treating COVID-19

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Infectious/Emerging DiseasesClimate ChangePublic HealthMedicine/HealthBiologyCell BiologycancerMaterialsGeneticsEcology/EnvironmentChemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science

Recent Posts

  • Scientists shed light on how and why some people report “hearing the dead”
  • Changing diets — not less physical activity — may best explain childhood obesity crisis
  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In