• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The lightest shielding material in the world

Bioengineer by Bioengineer
July 2, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Protection against electromagnetic interference

IMAGE

Credit: Empa

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic components or the transmission of signals. High-frequency electromagnetic fields can only be shielded with conductive shells that are closed on all sides. Often thin metal sheets or metallized foils are used for this purpose. However, for many applications such a shield is too heavy or too poorly adaptable to the given geometry. The ideal solution would be a light, flexible and durable material with extremely high shielding effectiveness.

Aerogels against electromagnetic radiation

A breakthrough in this area has now been achieved by a research team led by Zhihui Zeng and Gustav Nyström. The researchers are using nanofibers of cellulose as the basis for an aerogel, which is a light, highly porous material. Cellulose fibres are obtained from wood and, due to their chemical structure, enable a wide range of chemical modifications. They are therefore a highly popular research object. The crucial factor in the processing and modification of these cellulose nanofibres is to be able to produce certain microstructures in a defined way and to interpret the effects achieved. These relationships between structure and properties are the very field of research of Nyström’s team at Empa.

The researchers have succeeded in producing a composite of cellulose nanofibers and silver nanowires, and thereby created ultra-light fine structures which provide excellent shielding against electromagnetic radiation. The effect of the material is impressive: with a density of only 1.7 milligrams per cubic centimeter, the silver-reinforced cellulose aerogel achieves more than 40 dB shielding in the frequency range of high-resolution radar radiation (8 to 12 GHz) – in other words: Virtually all radiation in this frequency range is intercepted by the material.

Ice crystals control the shape

Not only the correct composition of cellulose and silver wires is decisive for the shielding effect, but also the pore structure of the material. Within the pores, the electromagnetic fields are reflected back and forth and additionally trigger electromagnetic fields in the composite material, which counteract the incident field. To create pores of optimum size and shape, the researchers pour the material into pre-cooled moulds and allow it to freeze out slowly. The growth of the ice crystals creates the optimum pore structure for damping the fields.

With this production method, the damping effect can even be specified in different spatial directions: If the material freezes out in the mould from bottom to top, the electromagnetic damping effect is weaker in the vertical direction. In the horizontal direction – i.e. perpendicular to the freezing direction – the damping effect is optimized. Shielding structures cast in this way are highly flexible: even after being bent back and forth a thousand times, the damping effect is practically the same as with the original material. The desired absorption can even be easily adjusted by adding more or less silver nanowires to the composite, as well as by the porosity of the cast aerogel and the thickness of the cast layer.

The lightest electromagnetic shield in the world

In another experiment, the researchers removed the silver nanowires from the composite material and connected their cellulose nanofibres with two-dimensional nanoplates of titanium carbide, which were produced using a special etching process. The nanoplates act like hard “bricks” that are joined together with flexible “mortar” made of cellulose fibers. This formulation was also frozen in cooled forms in a targeted manner. In relation to the weight of the material, no other material can achieve such shielding. This ranks the titanium carbide nanocellulose aerogel as by far the lightest electromagnetic shielding material in the world.

###

Media Contact
Gustav Nyström
[email protected]

Original Source

https://www.empa.ch/web/s604/cellulose-emi-shielding

Related Journal Article

http://dx.doi.org/10.1002/advs.202000979

Tags: Electrical Engineering/ElectronicsElectromagneticsHardwareMaterialsNanotechnology/MicromachinesTechnology/Engineering/Computer ScienceTelecommunicationsWeaponry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

MLH1 and GPRC5C: Prognostic Markers in Liver Cancer

August 3, 2025
Menopause, Microbiome Shifts, and Health Solutions

Menopause, Microbiome Shifts, and Health Solutions

August 3, 2025

Inside Layer 5 Thick Tufted Neurons’ Synaptic Network

August 3, 2025

Long-Lived Ghost Phonon Polaritons via Selective Excitation

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    45 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MLH1 and GPRC5C: Prognostic Markers in Liver Cancer

Menopause, Microbiome Shifts, and Health Solutions

Inside Layer 5 Thick Tufted Neurons’ Synaptic Network

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.