• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The first frost is the deepest

Bioengineer by Bioengineer
May 13, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: John Innes Centre

The first frost of autumn may be grim for gardeners but the latest evidence reveals it is a profound event in the life of plants.

The discovery may affect how we grow crops in a fluctuating climate and help us better understand molecular mechanisms in animals and humans.

Much of our understanding of how plants register temperature at a molecular level has been gained from the study of vernalization – the exposure to an extended period of cold as a preparation for flowering in spring.

Experiments using the model plant Arabidopsis have shown how this prolonged period of cold lifts the brake on flowering, a gene called FLC. This biochemical brake also involves another molecule COOLAIR which is antisense to FLC. This means it lies on the other strand of DNA to FLC and it can bind to FLC and influence its activity.

But less is known about how natural temperature changes affect this process. How does COOLAIR facilitate the shutdown of FLC in nature?

To find out, researchers from the John Innes Centre used naturally occurring types of Arabidopsis grown in different climates.

They measured how much COOLAIR is turned on in three different field sites with varying winter conditions, one in Norwich, UK, one in south Sweden and one in subarctic northern Sweden.

COOLAIR levels varied among different accessions and different locations. However, researchers spotted something that all the plants had in common – the first time the temperature dropped below freezing there was a peak in COOLAIR.

To confirm this boosting of COOLAIR after freezing they did experiments in temperature-controlled chambers which simulated the temperature changes seen in natural conditions.

They found COOLAIR expression levels rose within an hour of freezing and peaked about eight hours afterwards. There was a small reduction in FLC levels immediately after freezing too, reflecting the relationship between the two key molecular components.

Next, they found a mutant Arabidopsis which produces higher levels of COOLAIR all the time even when it is not cold, and low levels of FLC. When they edited the gene to switch off COOLAIR they found that FLC was no longer suppressed, providing further evidence of this elegant molecular mechanism.

Dr Yusheng Zhao, co-first author of the study said: “Our study shows a new aspect of temperature sensing in plants in natural field conditions. The first seasonal frost serves as an important indicator in autumn for winter arrival. The initial freezing dependent induction of COOLAIR appears to be an evolutionarily conserved feature in Arabidopsis and helps to explain how plants sense environmental signals to begin silencing of the major floral repressor FLC to align flowering with spring.”

The study offers insight into the plasticity in the molecular process of how plants sense temperatures which may help plants adapt to different climates.

Professor Dame Caroline Dean, corresponding author of the study explained: “From the plant’s point of view it gives you a tunable way of shutting off FLC. Any modulation of antisense will switch off sense and from an evolutionary perspective, depending on how efficiently or how fast this happens, and how many cells it happens in, you then have a way of dialing the brake up and down among cells.”

The findings will be helpful for understanding how plants and other organisms sense fluctuating environmental signals and could be translatable to improving crops at a time of climate change.

The discovery will also likely be widely relevant for environmental regulation of gene expression in many organisms because antisense transcription has been shown to alter transcription in yeast and human cells.

###

The study: Natural temperature fluctuations promote COOLAIR regulation of FLC appears in Genes & Development.

Media Contact
Adrian Galvin
[email protected]

Related Journal Article

http://dx.doi.org/10.1101/gad.348362.121

Tags: Agricultural Production/EconomicsBiochemistryBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyClimate ChangeClimate ScienceGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Global Movement and Annual Cycle in Spoonbills

Global Movement and Annual Cycle in Spoonbills

September 10, 2025

Targeted Intraoperative Radiotherapy Advances in Early Breast Cancer

September 10, 2025

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

September 10, 2025

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Movement and Annual Cycle in Spoonbills

Targeted Intraoperative Radiotherapy Advances in Early Breast Cancer

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.