• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

The complicated future of offshore wind power in the US

Bioengineer by Bioengineer
April 2, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research lays out thorny challenges facing renewable sector

Over the past decade, wind power production in the U.S. has tripled, becoming the largest source of renewable energy in the country, the American Wind Energy Association has reported. There are more than 56,800 wind turbines in 41 states and territories, generating more than 6 percent of the nation’s electricity, supporting more than 105,000 jobs and garnering billions of dollars in private and public investment.

While the vast majority of that production is happening on land — a rare exception being a small commercial wind farm off the Rhode Island coast — the U.S. Department of Energy (DOE) has laid out an ambitious plan to expand the nation’s wind sector into offshore waters.

A new Yale study found that implementation will not be as simple — or, potentially, as green — as it may seem.

Writing in the journal Nature Sustainability, Tomer Fishman, a former post-doctoral student at Yale School of Forestry & Environmental Studies (F&ES) and current lecturer at the IDC Herzliya in Israel, and Thomas Graedel, a professor emeritus at F&ES, challenged the DOE’s plan, focusing specifically on the challenge of supplying rare-earth metals needed to build these offshore wind turbines and the environmental, economic, and geopolitical issues at play.

Turbines like the ones off of Rhode Island, Fishman said, are enormous; they’re as tall as the Washington Monument and have a blade diameter longer than a football field. These turbines also require incredibly powerful magnets that use the element neodymium, a rare-earth metal. And they require enormous amounts of it: roughly 2,000 pounds is needed to produce each magnet.

Nearly all of the world’s neodymium is mined in China, where costs are cheaper and environmental regulations are less stringent, Fishman said. The magnets are built in Japan, then shipped to France where they are fitted into the turbines. Each step along the way, issues — like the current fractious trade relationship between the U.S. and China, for example — can “cause a bottleneck in the supply chain,” he said.

The DOE plan also does not consider the availability of neodymium, Fishman said. The U.S. has mined neodymium in the past — at California’s Mountain Pass rare earth mine — but financial troubles and environmental concerns brought operations to a halt several years ago.

Fishman and Graedel sought to address the potential issues in their paper, putting specific calculations to the plans laid out by the DOE. They found that creating a domestic program to build and install offshore wind turbines would create a complex web, raising questions of natural resource consumption, regional demand, and the recyclability of the turbine technology — in particular, the reuse of neodymium.

Fishman said their calculations could kickstart a realistic conversation of internalizing production of these turbines, which he believes is possible with the proper management.

“We can’t be sure that offshore wind power will take off in the U.S., but there are a lot of positives,” Fishman said. “We’ve seen land-based wind power in the U.S. succeed, in spite of political partisanship. Though this has added layers of complexity, there’s some promise there.”

“What we’re doing now is creating a roadmap to navigate the timing and scale of production,” he added. “We’re really starting from scratch, which give us the time to do it right and conduct more research. This is a good starting point.”

###

Media Contact
Joshua Anusewicz
[email protected]

Related Journal Article

http://environment.yale.edu/news/article/the-complicated-future-of-offshore-wind-power-in-the-us/
http://dx.doi.org/10.1038/s41893-019-0252-z

Tags: Chemistry/Physics/Materials SciencesEnergy SourcesIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caveolae, Rho Kinase Drive Senescence in Cancer Cells

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

New PfDHFR-TS Inhibitors Discovered from Natural Compounds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.