• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The butterfly effect: Climate change could cause decline of some alpine butterfly species

Bioengineer by Bioengineer
May 12, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study examines downstream effects of climate change on alpine butterfly populations in North America

IMAGE

Credit: Alessandro Filazzola.

The long-term effects of climate change suggests that the butterfly effect is at work on butterflies in the alpine regions of North America, according to a new study by University of Alberta scientists–and the predictions don’t bode well.

“We often frame the effects of climate change directly onto a species as the future becoming either too hot, too dry, or too wet,” explained Alessandro Filazzola, postdoctoral fellow in the Faculty of Science Department of Biological Sciences and lead author on the study. “However, climate change can have indirect effects such as through the food resources of a species. These effects are more likely to affect butterflies, because as caterpillars they often feed on one or a few plant species.”

The researchers used climate change models to understand the effects of changing ecosystems on alpine butterflies in North America. The results show that alpine butterflies who have specialized diets, meaning that they feed on one or a few plants, are more vulnerable to climate change because of fluctuations in their food. On the other hand, butterflies that have diverse diets are less likely to be affected.

“The main outcome from this study is our improved ability to quantify the complex effects of climate change on ecosystems,” said Filazzola, who conducted this work under the supervision of Professors Jens Roland and JC Cahill. “Understanding the effects of climate change on a species through its food items is very important for biological conservation–climate change is likely going to have complex effects that extend beyond single species mortality.”

Models like the one used in this study provide a more holistic approach to understanding the way that a changing climate could affect entire ecosystems. “Using an approach that looks at the ecosystem level would improve our ability to mitigate biodiversity loss and maintain the delivery of ecosystem services such as pollination,” added Filazzola.

###

This research was conducted in collaboration with Stephen F. Matter, adjunct professor at UAlberta and faculty member at University of Cincinnati. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Killam Trusts.

The paper, “Inclusion of trophic interactions increases the vulnerability of an alpine butterfly species to climate change,” was published in Global Change Biology (doi: 10.1111/gcb.15068).

Media Contact
Katie Willis
[email protected]

Original Source

https://www.ualberta.ca/science/news/2020/may/climate-change-butterflies.html

Related Journal Article

http://dx.doi.org/10.1111/gcb.15068

Tags: BiodiversityBiologyClimate ChangeEntomology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Impact of Sex Differences on Health: A Review

October 13, 2025
Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

October 12, 2025

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

October 12, 2025

Brainstem Connectivity Differences by Sex and Menopause

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1229 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Photodynamic Therapy Enhances Oxaliplatin Against Cervical Cancer

Biocompatible Elastomeric Transistor for Implantable Devices

IGF2BP3 Drives Stemness in Salivary Carcinoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.