• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The butterfly effect: Climate change could cause decline of some alpine butterfly species

Bioengineer by Bioengineer
May 12, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study examines downstream effects of climate change on alpine butterfly populations in North America

IMAGE

Credit: Alessandro Filazzola.

The long-term effects of climate change suggests that the butterfly effect is at work on butterflies in the alpine regions of North America, according to a new study by University of Alberta scientists–and the predictions don’t bode well.

“We often frame the effects of climate change directly onto a species as the future becoming either too hot, too dry, or too wet,” explained Alessandro Filazzola, postdoctoral fellow in the Faculty of Science Department of Biological Sciences and lead author on the study. “However, climate change can have indirect effects such as through the food resources of a species. These effects are more likely to affect butterflies, because as caterpillars they often feed on one or a few plant species.”

The researchers used climate change models to understand the effects of changing ecosystems on alpine butterflies in North America. The results show that alpine butterflies who have specialized diets, meaning that they feed on one or a few plants, are more vulnerable to climate change because of fluctuations in their food. On the other hand, butterflies that have diverse diets are less likely to be affected.

“The main outcome from this study is our improved ability to quantify the complex effects of climate change on ecosystems,” said Filazzola, who conducted this work under the supervision of Professors Jens Roland and JC Cahill. “Understanding the effects of climate change on a species through its food items is very important for biological conservation–climate change is likely going to have complex effects that extend beyond single species mortality.”

Models like the one used in this study provide a more holistic approach to understanding the way that a changing climate could affect entire ecosystems. “Using an approach that looks at the ecosystem level would improve our ability to mitigate biodiversity loss and maintain the delivery of ecosystem services such as pollination,” added Filazzola.

###

This research was conducted in collaboration with Stephen F. Matter, adjunct professor at UAlberta and faculty member at University of Cincinnati. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Killam Trusts.

The paper, “Inclusion of trophic interactions increases the vulnerability of an alpine butterfly species to climate change,” was published in Global Change Biology (doi: 10.1111/gcb.15068).

Media Contact
Katie Willis
[email protected]

Original Source

https://www.ualberta.ca/science/news/2020/may/climate-change-butterflies.html

Related Journal Article

http://dx.doi.org/10.1111/gcb.15068

Tags: BiodiversityBiologyClimate ChangeEntomology
Share12Tweet8Share2ShareShareShare2

Related Posts

Embryonic Heat Manipulation: Metabolic Programming Insights

Embryonic Heat Manipulation: Metabolic Programming Insights

November 9, 2025
ProteinFormer: Transforming Protein Localization with Bioimages

ProteinFormer: Transforming Protein Localization with Bioimages

November 9, 2025

Impact of Perfluoroalkyl Substances on E. coli Phases

November 9, 2025

MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stress, Flexibility, and Perception in Student Mental Health

Oleanolic Acid: A Multi-Strategy Weapon Against Cancer

Embryonic Heat Manipulation: Metabolic Programming Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.