• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, June 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

The brain thinks, the spinal cord implements

Bioengineer by Bioengineer
January 13, 2015
in Neuroscience
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Even after complete spinal paralysis, the human spinal cord is able to trigger activity in the leg muscles using electrical pulses from an implanted stimulator. This has already been demonstrated in earlier studies conducted in Vienna. Now, as part of a joint international project, a team of young researchers at the Center for Medical Physics and Biomedical Engineering at MedUni Vienna has succeeded in identifying the mechanisms the spinal cord uses to control this muscle activity. These mechanisms still work even if the neural pathways from the brain are physically interrupted as the result of a spinal cord injury. This is the first time throughout the world that the spinal-cord activation patterns for walking have been decoded.

spinal cord

Photo Credit: libbymcgugan

Paraplegics still have neural connections (so-called locomotion centers) below the site of the injury and these can trigger rhythmic movements in the legs. “Using statistical methods, we were able to identify a small number of basic patterns that underlie muscle activities in the legs and control periodic activation or deactivation of muscles to produce cyclical movements, such as those associated with walking. Just like a set of building blocks, the neural network in the spinal cord is able to combine these basic patterns flexibly to suit the motor requirement,” explains study author Simon Danner, from the Center for Medical Physics and Biomedical Engineering of MedUni Vienna. The results have now been published in the leading journal “Brain”.

Although the brain or brain stem acts as the command center, it is the neural networks in the spinal cord that actually generate the complex motor patterns. These locomotion centers are to be found in most vertebrates. A well-known example of this is when the spinal cord continues to transmit signals even when the brain is no longer involved, as in the headless chicken running around the farmyard. Even after control by the brain has been lost, the spinal cord continues to send out motor signals, which are translated into movements of the legs and/or wings.

New possibilities for rehabilitation following spinal paralysis
These new findings relating to the basic patterns for triggering and coordinating muscle movements in the legs should also help in developing new approaches to rehabilitation aimed at utilizing those neural networks that are still functional following an accident and the resulting paralysis by stimulating them electrically. This opens the way to new therapeutic options for helping paraplegics to at least partially regain lost rhythmic movements.

Exactly how the neural networks need to be stimulated depends upon the patient’s individual injury profile and is the subject of further studies. To help with this, the scientists at MedUni Vienna have developed a unique, non-invasive method for stimulating the spinal cord, which involves attaching electrodes to the surface of the skin. “This method allows easy access to the neural connections in the spinal cord below a spinal injury and can therefore be offered to those suffering from paraplegia without exposing them to any particular medical risks or stresses,” says Karen Minassian, senior author of the current publication.

Story Source:

The above story is based on materials provided by Medical University of Vienna.

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    70 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

From Code to Command: New Prompt Training Technique Empowers Users to Communicate with AI

NIH Launches New Research Initiative to Investigate PFAS Effects on Male Reproductive Health

Enzyme-Driven Scaffold Hopping Creates Diverse Terpenoids

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.