• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Texas Heart Institute develops breakthrough heart ablation evaluation system

Bioengineer by Bioengineer
February 10, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The new ex vivo benchtop system is detailed in a study published in the Journal Cardiovascular of Electrophysiology

IMAGE

Credit: Texas Heart Institute

The Texas Heart Institute (THI) has announced that a research team led by Dr. Mehdi Razavi, Director of Electrophysiology Clinical Research & Innovations, has developed a breakthrough new ex vivo benchtop system for evaluating the effects of ablation systems on excised tissues and assessing potential damage to collateral heart tissues. The unique system allows for fast and easy benchtop assessments rather than using costly in vivo tests. Critical findings associated with this innovation are outlined in a study published in the Journal Cardiovascular of Electrophysiology.

The new ablation method evaluated by Dr. Razavi and team is being assessed and used clinically as a promising development to combat the challenge of reducing atrial esophageal fistulas – which are uncommon but often deadly late-stage complications of atrial fibrillation ablation procedures that result from massive thermal injury to the esophagus and surrounding components. Atrial fibrillation (AF) is the most common sustained heart rhythm disorder in clinical cardiology practice worldwide.

“We created this custom, simple, easy to use fixture to study different ablation settings and the collateral impact of the ablation on the surrounding tissues. It has been useful not only in this particular study, but in many of our other projects as well. It’s quite versatile,” said Mathews John, Dr. Razavi’s Research Engineer III at THI.” Our expertise in ablation and access to an extensive set of ablation equipment enabled us to do these experiments in a way that truly mimics what actually happens in a clinical setting.”

The most critical finding of the study is that High Power Short Duration (HPSD) ablation protocols may be associated with greater epiesophageal thermal deviations relative to endoluminal measurements. The inaccuracy, in turn, raises the threat of downstream clinical consequences. The results of this ex vivo study support the need for esophageal temperature monitoring, particularly during HPSD ablation.

“Electrophysiology doctors have been utilizing this method previously, but no one has really taken a closer look at the full scope of thermodynamics in play during ablation operations,” Dr. Mehdi Razavi noted. He added, “Current technology does not monitor temperature outside of the esophagus during the procedure; it can only monitor temperature changes inside the esophagus itself, which is significant given the fact that major temperature changes occur outside of the organ. To that end, our study sheds light on the problem related to the lack of ability to comprehensively track temperature during these types of procedures and presents an ex vivo method for mitigating this setback.”

The study setup detailed in the manuscript was easily modifiable for collaborations with outside companies to evaluate their new devices in order to help them better gather thermodynamic data and validate potential users of the novel technology.

“Overall, our publication demonstrates very interesting findings from the comparison of two different commonly used ablation methods that have been evaluated using this benchtop system and highlights safety measures that should be considered in a clinical setting. The THI Electrophysiology Clinical Research & Innovations team is excited to use this system for further evaluation and characterization of novel cutting-edge ablation systems,” Dr. Razavi concluded.

The Texas Heart Institute research presented in the Journal of Cardiovascular Physiology represents a preliminary study of these differences; further studies with larger sample sizes and within vivo characterization will be required to make clinical recommendations.

###

ABOUT TEXAS HEART INSTITUTE (THI)

The Texas Heart Institute, founded by world-renowned cardiovascular surgeon Dr. Denton A. Cooley in 1962, is a nonprofit organization dedicated to reducing the devastating toll of cardiovascular disease through innovative and progressive programs in research, education, and improved patient care. THI’s scientists and physicians conduct fundamental biomedical, translational, and clinical research in cardiology, cardiovascular surgery, molecular-based medicine, stem cell and gene therapy, and regenerative medicine both independently and in collaboration with organizations worldwide. As global leaders of patient care for nearly six decades, Texas Heart Institute has been ranked among the top cardiovascular centers in the United States by U.S. News & World Report for the past 30 years. THI is dedicated to spreading awareness and sharing updates on ways to prevent, treat and defeat cardiovascular disease. With over 10 million visitors coming to its website from around the world every year, http://www.texasheart.org is just one of the ways THI is helping to educate people on the importance of heart health. For more information, please visit https://www.texasheart.org.

Media Contact
Keri Sprung
[email protected]

Original Source

https://www.texasheart.org/texas-heart-institute-research-team-led-by-dr-mehdi-razavi-develops-breakthrough-heart-ablation-evaluation-system/

Related Journal Article

http://dx.doi.org/10.1111/jce.14911

Tags: BiotechnologyCardiologyHealth ProfessionalsMedicine/HealthMortality/LongevityResearch/DevelopmentStrokeSurgeryTrauma/Injury
Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Author Correction: New Analysis Clarifies Parkinson’s Trial Benefits

August 13, 2025
Optimizing Fuel Cell Parameters with AI Techniques

Optimizing Fuel Cell Parameters with AI Techniques

August 13, 2025

DKMS John Hansen Research Grant 2026 Awards Nearly €1 Million to Advance Innovative Blood Cancer Therapies

August 13, 2025

Twisted Bilayer MOFs Unlock Tailored Moiré Patterns, Driving Breakthroughs in Twistronics and Quantum Materials

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Author Correction: New Analysis Clarifies Parkinson’s Trial Benefits

Optimizing Fuel Cell Parameters with AI Techniques

DKMS John Hansen Research Grant 2026 Awards Nearly €1 Million to Advance Innovative Blood Cancer Therapies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.