• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Testing corneal cell quality? Apply physics

Bioengineer by Bioengineer
July 22, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Kyoto scientists develop a physical biomarker for cornea restoration therapy

IMAGE

Credit: Kyoto University/Tomo Narashima

Our eyes — the windows to the soul — need constant care, and as we age, they sometimes also need significant repair.

The panes of these windows — the corneas — are transparent tissues that have been the focus of some of the oldest and most common transplantation surgeries. Now thanks to researchers in Kyoto, some such transplants may become even safer.

The team, led by Kyoto University physicists and Kyoto Prefectural University of Medicine (KPUM) ophthalmologists, has developed a ‘quantitative biomarker’ that makes it possible to assess the quality of corneal cells — and even predict their long-term efficacy — through simple observation. A report on their findings appeared recently in Nature Biomedical Engineering.

“Cornea transplantations become necessary when ‘corneal endothelial cells’ decrease in number, resulting in haziness,” explains project leader Motomu Tanaka.

Endothelia don’t multiply well in the human body, which is why there has been a need to rely on the transplantation of donor corneas for treatment. Fortunately, in 2009 a team of ophthalmologists at KPUM succeeded in developing a method to culture the cells in a dish.

“These new cells could then be then transplanted into the eyes of patients and restore their corneas to health,” says KPUM’s Morio Ueno.

This method has shown significant promise in clinical trials, but two major obstacles to wider application remain: quality control of cells before injection and confirmation of long-term functionality.

Typically, cell quality is assessed through protein expression patterns via ‘flow cytometry’. However, a single test requires almost 100,000 cells and relies heavily on the observations and experience of senior professionals.

“Cells in a tissue are constantly interacting with each other to maintain a steady state, called homeostasis,” explains first author Akihisa Yamamoto, adding that the concept of ‘colloid physics’ — a method for measuring interactions of micro- and nanoparticles — was employed to assess the cornea cells.

“Calculating the interactions between all cells in the cornea allowed us to find the ‘spring constant’, correlating with collective cell order.”

Assessment is relatively simple. Researchers only need to extract the ‘rims’ of the cells, either from a microscopic image of the cells in a culture dish or from ophthalmological inspection images of the patients’ eyes. Both the quality of the cells and their long-term efficacy can be determined with just one equation.

The procedure has potential applications in preemptive medicine, enabling clinicians and doctors to intervene before more severe symptoms appear.

“Our results are thanks to the united effort of physicists and doctors engaged in regenerative medicine,” concludes Tanaka. “We foresee that our ‘quantitative biomarker’, and the concept behind it, will be applied to other epithelial cell cultures and tissues in the future.”

###

The paper “A physical biomarker of the quality of cultured corneal endothelial cells and of the long-term prognosis of corneal restoration in patients” appeared on 22 July 2019 in Nature Biomedical Engineering, with doi: 10.1038/s41551-019-0429-9

About Kyoto University

Kyoto University is one of Japan and Asia’s premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Media Contact
Raymond Kunikane Terhune
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41551-019-0429-9

Tags: BioinformaticsBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyDiagnosticsMedicine/HealthOphthalmologySurgeryTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.