• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Temporary salt crystals may provide a permanent solution to Alzheimer’s

Bioengineer by Bioengineer
July 27, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka University researchers show that salt crystals can precipitate at low concentrations owing to local density fluctuation and their repeated precipitation-dissolution behavior promotes aggregation of Amyloid-β peptides implicated in Alzheimer’s

IMAGE

Credit: Osaka University

Osaka, Japan – Alzheimer’s disease is the leading cause of dementia worldwide and a major cause of disability. Now, researchers at Osaka University and Hokkaido University have shown that repeated precipitation-dissolution events of salt crystals do occur even at low salt concentrations in nanoscales, and that it can accelerate the aggregation of the neurotoxic amyloid-β peptides implicated in its pathogenesis.

The human brain comprises around 86 billion neurons, roughly as many grains of sand as in a large dump truck. These neurons juggle electrochemical information as signals among the brain, muscles and organs to orchestrate the symphony of life from survival to self-awareness. Alzheimer’s disease disrupts this complex neuronal networking, causing functional disability and cell death. As yet uncurable, available treatments are symptomatic, supportive, or palliative; a breakthrough in understanding its pathogenesis may brighten the prospects for medication, diagnosis and prevention.

The role of amyloid in Alzheimer’s disease has long been recognized. Amyloid-β peptides are derived from amyloid precursor protein and they self-assemble into sizes ranging from low-molecular-weight aggregates and larger oligomers to amyloid fibrils. These last are known to be neurotoxic but recent research suggests that oligomeric disordered aggregates are also toxic, possibly even more than fibrils.

“Fibril aggregation begins with nucleation followed by an elongation stage,” explains Kichitaro Nakajima, lead author of this study. “Until now, the early stages of oligomer evolution have been difficult to study because of their morphologic variability, the timeframe for nucleation, and the lack of a suitable fluorescent assay.”

Using liquid-state transmission electron microscopy, the researchers analyzed the aggregation of protein molecules, acquiring time-resolved nanoscale images and electron diffraction patterns. “Remarkably, we discovered that a salt crystal can precipitate even at a concentration well below its solubility due to local density fluctuation, and its rapid dissolution accelerates the aggregation reaction of amyloid-β peptides,” says Professor Hirotsugu Ogi, the corresponding author. “This formation of temporary salt crystals provides a mechanism whereby proteins adhere to the surface of the crystal; as it dissolves, the interface shrinks, condensing the proteins at the vanishing point. This phenomenon resembles the aggregation acceleration by ultrasonic cavitation bubble. Proteins are attached on the bubble surface during the expansion phase, and they are highly condensed by the subsequent bubble collapses by the positive pressure of ultrasonic wave at its center. This is the artificial catalytic effect. Thus, in an autocatalytic-like nanoscopic aggregation mechanism, salt dissolution accelerates the aggregation reaction, and the aggregate itself can promote salt nucleation.”

Ogi explains the implications of their results: “The aggregation of amyloid-β peptides is slow and this has been a hindrance to pharmaceutical research. Establishing an effective acceleration method will help clarify their structural evolution from monomer to fibril. This knowledge is key to understanding the pathogenesis of Alzheimer’s disease.”

###

The article, “Time-resolved observation of evolution of amyloid-β oligomer with temporary salt crystals,” was published in The Journal of Physical Chemistry Letters at DOI: https://dx.doi.org/10.1021/acs.jpclett.0c01487

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan’s leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan’s most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]

Original Source

https://resou.osaka-u.ac.jp/en/top

Related Journal Article

http://dx.doi.org/10.1021/acs.jpclett.0c01487

Tags: AgingAlzheimerBiologyBiomechanics/BiophysicsBiotechnologyMolecular Biologyneurobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Sex Differences in Energy Demand in Alzheimer’s Model

October 19, 2025
blank

Sex Differences in Anxiety and Depression Modulation

October 19, 2025

Ovarian Hormones Curb Fear Relapse via Dopamine Pathway

October 18, 2025

RNA Sequencing Uncovers Bovine Embryo Activation Regulators

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1262 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    291 shares
    Share 116 Tweet 73
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    125 shares
    Share 50 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Resilience and Care Skills in Oncology Nurses

Exploring Chronic Hepatitis B and Fatty Liver Proteomics

New Distribution Record: Cymbalaria muralis in Kashmir Himalaya

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.