• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 19, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Temperature evolution of impurities in a quantum gas

Bioengineer by Bioengineer
October 14, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

What role does heat play in quantum impurity studies?

IMAGE

Credit: FLEET

A new, Monash-led theoretical study advances our understanding of its role in thermodynamics in the quantum impurity problem.

Quantum impurity theory studies the behaviour of deliberately introduced atoms (ie, ‘impurities’) that behave as particularly ‘clean’ quasiparticles within a background atomic gas, allowing a controllable ‘perfect test bed’ study of quantum correlations.

The study extends quantum impurity theory, which is of significant interest to the quantum-matter research community, into a new dimension–the thermal effect.

“We have discovered a general relationship between two distinct experimental protocols, namely ejection and injection radio-frequency spectroscopy, where prior to our work no such relationship was known.” explains lead author Dr Weizhe Liu (Monash University School of Physics and Astronomy).

QUANTUM IMPURITY THEORY

Quantum impurity theory studies the effects of introducing atoms of one element (ie, ‘impurities’) into an ultracold atomic gas of another element.

For example, a small number of potassium atoms can be introduced into a ‘background’ quantum gas of lithium atoms.

The introduced impurities (in this case, the potassium atoms) behave as a particularly ‘clean’ quasiparticle within the atomic gas.

Interactions between the introduced impurity atoms and the background atomic gas can be ‘tuned’ via an external magnetic field, allowing investigation of quantum correlations.

In recent years there has been an explosion of studies on the subject of quantum impurities immersed in different background mediums, thanks to their controllable realization in ultracold atomic gases.

MODELLING ‘PUSH’ AND ‘PULL’ WITH RADIO-FREQUENCY PULSES

“Our study is based on radio-frequency spectroscopy, modelling two different scenarios: ejection and injection,” says Dr Weizhe Liu, who is a Research Fellow with FLEET, FLEET working in the group of A/Prof Meera Parish and Dr Jesper Levinsen.

The team modelled the effect of radio-frequency pulses that would force impurity atoms from one spin state into another, unoccupied spin state.

  • Under the ‘ejection’ scenario, radio-frequency pulses act on impurities in a spin state that strongly interact with the background medium, ‘pushing’ those impurities into a non-interacting spin state.
  • The inverse ‘injection’ scenario ‘pulls’ impurities from a non-interacting state into an interacting state.

These two spectroscopies are commonly used separately, to study distinctive aspects of the quantum impurity problem.

* Instead, the new Monash study shows that the ejection and injection protocols probe the same information.

“We found that the two scenarios – ejection and injection – are related to each other by an exponential function of the free-energy difference between the interacting and noninteracting impurity states,” says Dr Liu.

###

THE STUDY

Radio-Frequency Response and Contact of Impurities in a Quantum Gas was published in Physical Review Letters in August 2020 (DOI: 10.1103/PhysRevLett.125.065301). This work is jointly published with Theory of radio-frequency spectroscopy of impurities in quantum gases in Physical Review A (DOI: 10.1103/PhysRevA.102.023304).

This work is supported by the Australian Research Council (Centres of Excellence, Future Fellowship and Discovery programs).

Deeper understanding for quantum impurities or quasiparticles are sought within ” target=”_blank”>research theme 3 at FLEET, an Australian Research Council Centre of Excellence

Media Contact
Errol Hunt
[email protected]

Original Source

http://www.fleet.org.au/blog/temperature-evolution-of-impurities-in-a-quantum-gas/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevA.102.023304

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Latch, load and release: Elastic motion makes click beetles click, study finds

January 18, 2021
IMAGE

How cells move and don’t get stuck

January 18, 2021

New method to assist fast-tracking of vaccines for pre-clinical tests

January 18, 2021

Synthesis of potent antibiotic follows unusual chemical pathway

January 18, 2021
Next Post
IMAGE

Divisive dialogue: Why do we engage in virtual political talk?

IMAGE

Stay in touch with your emotions to reduce pandemic-induced stress

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    59 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsGeneticsBiologyClimate ChangeChemistry/Physics/Materials SciencesMedicine/HealthInfectious/Emerging DiseasesEcology/EnvironmentTechnology/Engineering/Computer SciencecancerPublic HealthCell Biology

Recent Posts

  • A clinical trial provides encouraging results on ivermectin for reducing mild COVID-19
  • New approach emerges to better classify, treat brain tumors
  • New drug combination shows promise as powerful treatment for AML
  • Green med diet cuts non-alcoholic fatty liver disease by half – Ben-Gurion U. study
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In