• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Team’s fabricated corneal tissue allows closer look at how eyes heal

Bioengineer by Bioengineer
January 9, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NIH grant helps researchers develop new ways to study eye’s repair mechanisms

IMAGE

Credit: The University of Texas at Dallas


Cells called corneal keratocytes are innately programmed to come to the rescue if the eye is injured. This natural healing process sometimes fails, however, resulting in scarring and blindness. Scientists are still trying to understand why.

New research by University of Texas at Dallas bioengineer Dr. David Schmidtke aims to help solve that mystery. Schmidtke and his team have demonstrated a technique in the lab for fabricating tiny strands of collagen called fibrils to facilitate further research on the eye’s repair process. The method was detailed in a new study published in the December issue of the journal Biomedical Microdevices.

The study was funded in part by a $1.8 million, five-year National Institutes of Health grant that Schmidtke received last summer to develop new ways to study the eye’s healing mechanisms — knowledge that may lead to new therapies and treatments.

“How keratocytes repair tissue and why, in some cases, they leave scar tissue, is not well understood,” said Schmidtke, professor of bioengineering in the Erik Jonsson School of Engineering and Computer Science. “We came up with a way to mimic an injury model, so we can look at how the cells respond when there is a wound.”

Dr. Matthew Petroll, professor of ophthalmology and chair of the biomedical engineering graduate program at UT Southwestern Medical Center, initially approached Schmidtke for help in finding a new way to study how the patterning and topography of fibrils can influence corneal cell behavior. These threadlike structures are arranged in a crisscross pattern in the eye and serve as a path to guide keratocytes to an injury.

The UT Dallas research draws on Schmidtke’s expertise in microfluidic devices, which are palm-sized pieces of transparent plastic that contain small channels about the size of a strand of human hair. He is using these devices to fabricate the fibrils. Schmidtke’s research team, which includes undergraduate and graduate students, injects collagen into the channels. The collagen polymerizes as it flows through the channels, resulting in aligned fibrils that are similar in structure to the collagen fibrils that are present in corneal tissue.

Schmidtke is working with Dr. Victor Varner, assistant professor of bioengineering at UT Dallas, who is focusing on how keratocytes sense the level of stiffness or softness in the fibrils with which they interact. The researchers plan to study how fibrils’ density, elasticity and dimensionality affect keratocytes. For example, keratocytes behave differently on aligned collagen fibrils compared to randomly oriented collagen fibrils, Schmidtke said.

The research could help develop therapies to reduce corneal scarring and guide efforts to engineer tissue replacements. The models also could be used in other fields where researchers need to study cell patterning and behavior. Schmidtke conducts his research at UT Dallas and in lab space at UT Southwestern.

“The collaboration with UT Southwestern, and having research lab space there, has been a big benefit to applying engineering tools to biomedical questions,” he said.

###

Other authors of the study include Petroll and Varner, UT Dallas biomedical engineering doctoral student Kevin H. Lam, and UT Southwestern doctoral students Pouriska B. Kivanany and Kyle Grose, and postdoctoral research associates Dr. Nihan Yonet-Tanyeri and Dr. Nesreen Alsmadi.

In addition to NIH funding, the research was supported by grants from the Office of the Vice President for Research at UT Dallas, the UT Southwestern Hamon Center for Regenerative Science and Medicine, the UT Southwestern George M. O’Brien Kidney Research Core Center and the nonprofit organization Research to Prevent Blindness.

Media Contact
Media Relations
[email protected]
972-883-2155

Original Source

https://www.utdallas.edu/news/research/eye-repair-tissue-2020/?WT.mc_id=NewsHomePage

Related Journal Article

http://dx.doi.org/10.1007/s10544-019-0436-3

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyDisease in the Developing WorldMedicine/HealthOphthalmologyTechnology/Engineering/Computer ScienceTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

Identifying Crustacyanin Gene Family in Neocaridina Denticulata

Identifying Crustacyanin Gene Family in Neocaridina Denticulata

November 30, 2025
blank

Varied Genetic Resistance to Key Bacterial Pathogen in Trout

November 30, 2025

New Tribe Discovered in Tuberolachnini and Lachninae

November 30, 2025

Evaluating SNP Arrays vs Imputed Data in Horses

November 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    66 shares
    Share 26 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wearable Tech Uncovers Early Signs of Arthritis Flares

Exploring Online Health Searches and Complementary Medicine

Identifying Crustacyanin Gene Family in Neocaridina Denticulata

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.