• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, January 21, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Targeting calcium overload could improve stroke outcomes, research suggests

Bioengineer by Bioengineer
November 23, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtesy Tvrdik lab

Excessive calcium contributes to harmful inflammation in ischemic stroke, and targeting it may provide doctors with a new way to improve patient outcomes, new research from the University of Virginia School of Medicine suggests.

Petr Tvrdik, PhD, has found that immune cells called microglia are flooded with waves of calcium in the wake of ischemic strokes, which are strokes caused by disruption of blood flow to the brain. These calcium waves, he determined, trigger damaging inflammation that may worsen the stroke’s effects.

Blocking the calcium waves, his work suggests, may help control the harmful inflammation and offer doctors a way to reduce the often-debilitating effects of ischemic stroke.

“This publication culminates several years of research on this previously unrecognized aspect of stroke pathology,” said Tvrdik, of UVA’s Departments of Neurosurgery and Neuroscience. “Our success would not be possible without exceptional contributions of the lead authors on the study, medical students Kathryn Kearns and Lei Liu. A special mention in this regard goes to the support from Medical Summer Research Projects, directed by Dr. Driscoll, which provided a stimulating environment for the students and much-needed help for my lab.”

The Answer is Calcium

Scientists have known for almost two decades that the lack of blood flow to the brain during ischemic strokes causes waves of abnormal brain activity, which are called cortical spreading depolarizations, or CSDs. These CSDs are harmful and can set the stage for additional brain damage. In addition to occurring in ischemic stroke, they are also seen in traumatic brain injuries (TBI), migraine and subarachnoid hemorrhages, which are bleeds in the space between the brain and its surrounding membrane.

The new research from Tvrdik and his colleagues sheds light on what is occurring during these CSDs. Working in laboratory mice, the scientists found that ischemic strokes trigger waves of calcium to flood through the brain’s defenders, the immune cells known as microglia. This calcium overload “triggers CSDs in a recurring and progressive fashion,” the researchers write in a new scientific paper.

“Further research is needed to determine just how harmful these calcium waves are,” Tvrdik said. “Our paper received top 5% attention score on social media. We hope that this excitement in the field will translate into more funding for our research.”

Promisingly, the researchers were able to use a drug to reduce the calcium waves in their mouse models by more than 25%. This gives them hope that a similar approach could be used to reduce the calcium waves’ harmful effects in stroke patients, though more research is needed.

“We are fortunate to collaborate with CalciMedica, a pharmaceutical company who specializes in developing drugs suppressing calcium overload in the immune cells,” Tvrdik said. “We share the vison that our research might help to identify an effective drug that will improve the recovery of stroke survivors.”

###

Findings Published

The researchers have published their findings in the scientific journal Stroke. The research team consisted of Lei Liu, Kathryn N. Kearns, Ilyas Eli, Khadijeh A. Sharifi, Sauson Soldozy, Elizabeth W. Carlson, Kyle W. Scott, M. Filip Sluzewski, Scott T. Acton, Kenneth A. Stauderman, M. Yashar S. Kalani, Min Park and Petr Tvrdik.

Stauderman is chief scientific officer and a stockholder at CalciMedica Inc., which has filed a patent for the use of calcium channel inhibitors including CM-EX-137 for the treatment of stroke and traumatic brain injury.

Research tools used in the work were supported by the National Institutes of Health, grant R21 OD016562.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

Media Contact
Josh Barney
[email protected]

Related Journal Article

http://dx.doi.org/10.1161/STROKEAHA.120.032766

Tags: BiologyCardiologyCritical Care/Emergency MedicineDeath/DyingMedicine/HealthneurobiologyPharmaceutical ScienceStroke
Share13Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Combining best of both worlds for cancer modeling

January 21, 2021
IMAGE

Squeezing a rock-star material could make it stable enough for solar cells

January 21, 2021

Researchers develop new graphene nanochannel water filters

January 21, 2021

A display that completely blocks off counterfeits

January 21, 2021
Next Post
IMAGE

Breakthrough in studying the enzyme that ultimately produces fish odour syndrome

IMAGE

Remote control of heat nanosources motion and thermal-induced fluid flows by using light forces

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    64 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

cancerEcology/EnvironmentGeneticsClimate ChangeTechnology/Engineering/Computer ScienceMaterialsInfectious/Emerging DiseasesPublic HealthBiologyMedicine/HealthCell BiologyChemistry/Physics/Materials Sciences

Recent Posts

  • New study: nine out of ten US infants experience gut microbiome deficiency
  • Catching cancer in the act
  • NASA mission to test technology for satellite swarms
  • A new study shows the relationship between surgery and Alzheimer’s disease
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In