• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Tapping into the way cells communicate

Bioengineer by Bioengineer
June 24, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new technology discovered by UConn School of Dental Medicine researchers records cellular communication in real time – providing a closer look into the dynamics of cell secretion and a greater understanding of how cells repair tissue.

In a study published today in the Proceedings of the National Academy of Sciences, Kshitiz Gupta, an assistant professor (who goes by just his first name), and Yashir Suhail, a postdoctoral fellow, in the Dental School’s Department of Biomedical Engineering, unlocked a breakthrough technology platform.

Now for the first time, scientists can record cells communicating in real time, opening the floodgates for new developments in cell therapy and other areas within cell biology.

Cells – like humans – are in constant communication with each other. Whereas humans exchange words, cells deliver and receive messages through secreting proteins and changing their behavior accordingly. When we listen to humans speak to each other, we can understand how words are placed into sentences and how the conversation moves back and forth. When it comes to recording communication between cells, however, the key characteristics of the conversation have been largely unknown until now.

Communication between cells is necessary to maintain most functions in the body and can also help the body properly respond to an external cue – such as an ailment or injury. Current technology only allows broad snapshots of these protein secretions.

“This is akin to detecting what words were spoken in a sentence, but not really knowing their placement, the inflection, and tone of the message,” says Kshitiz. Prior to the current findings, he adds, understanding of the language of communication between cells has been very limited, and did not capture the complexity of messaging involved.

Using a combination of microfluidics and computer modeling, researchers created a platform to record cell messages in depth, uncovering the precise ways in which the words and messages are arranged in these intercellular conversations.

In the study, which was funded by the American Heart Association and the National Cancer Institute, Kshitiz and his team looked at stem cells from bone marrow that can be used to treat myocardial infarction, commonly known as a heart attack. Using the platform, the researchers recorded the proteins that were secreted by these stem cells, and how these secretions changed with time.

The information was used to create a protein cocktail that led to a second discovery – the possibility of aiding an injury without the use of stem cells. Since the researchers recorded in depth the conversations between the stem cells, they were able to copy the stem cells’ exact behavior.

Stem cells – the researchers witnessed – are flexible enough to change their behavior depending on the injury present. These cells only act as “Good Samaritans,” the researchers discovered, when they see injured tissue.

This information created a way to make a “cell-less” therapy by copying what stem cells do when they see a tissue injury and creating a new protein cocktail that aided in repairing cardiac tissue. The discovery of cell-less therapy can potentially reduce many complications associated with stem cell transplantation in the future.

“The findings solve a fundamental problem afflicting systems biology: measuring how cells communicate with each other,” says Suhail. “The platform technology will open new lines of inquiry into research, by providing a unique way to detect how cells talk to each other at a deeper level than what is possible today.”

###

UConn’s researchers collaborated on the study with Andre Levchenko and Onur Kilic, Yale University; David D. Ellison and Laura Woo, The Johns Hopkins School of Medicine; Junaid Afzal, University of California, San Francisco; and Jeffrey Spees, University of Vermont.

Media Contact
Courtney Chandler
[email protected]
https://today.uconn.edu/2019/06/tapping-way-cells-communicate/

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyCardiologyCell BiologyDentistry/Periodontal DiseaseMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

New ECU Study Reveals Muscle Loss in Children During Early Cancer Treatment: A Hidden Threat to Recovery

September 10, 2025

Biochar and Starch Combo Boosts Lettuce Resilience Against Antibiotic Pollution

September 10, 2025

RSV Can Severely Impact Even Healthy Children, New Research Shows

September 10, 2025

Keto Diet May Alleviate Depression Symptoms Among College Students, Study Finds

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

Misconceptions Prevent Certain Cancer Patients from Accessing Hormone Therapy Benefits

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.