• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tadpoles break the tension with bubble-sucking

Bioengineer by Bioengineer
February 26, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kurt Schwenk

When it comes to the smallest of creatures, the hydrogen bonds that hold water molecules together to form “surface tension” lend enough strength to support their mass: think of insects that skip across the surface of water. But what happens to small creatures that dwell below the surface of the water?

UConn researchers have taken a close look, and in research published recently in The Proceedings of the Royal Society B, have documented how tiny tadpoles are able to access air above the water’s surface, breathing without having to break through the surface tension.

Tadpoles often live in water with low oxygen levels where fewer predators lurk, but this also means the tadpoles need a way to get to air to breathe. Tadpoles have gills, but they don’t usually provide enough oxygen for them to survive, so most tadpoles also have lungs and breathe air as a back-up. But during the earliest period of their lives, tadpoles are too small to break through the water’s surface to breathe. Luckily for the tadpoles, they have a way to work around this problem, says ecology and evolutionary biology professor Kurt Schwenk.

Tadpoles will often charge upward toward the surface of the water, yet due to their small size and the surface tension of the water, they bounce back down. While watching this during an unrelated study on aquatic salamanders feeding on tadpoles, Schwenk noticed a bubble left behind after one tadpole’s visit to the underside of the water’s surface.

“Many researchers have observed tadpoles breathing at the surface before, but unless you look very closely and slow the action down, you can’t see what is actually happening,” says Schwenk.

Using high-speed macro-videography, Schwenk and graduate researcher Jackson Phillips captured hundreds of breathing events on film shooting at the super slow motion rate of 500-1000 frames per second. The tadpoles were seen to use a never-before-described breathing mechanism they call “bubble-sucking,” a novel breathing mechanism for vertebrates captured with novel technology.

“This research would have been much more difficult to do before high-speed video cameras were developed, and that is probably why the behavior has not been described before,” says Schwenk.

The researchers studied tadpoles from five species of frogs — four of which can be found in Connecticut. What they found was that tadpoles of all species were able to inflate their lungs within a few days of hatching, despite being too small to access air.

Instead of breaching the water’s surface, the tadpoles were seen to bubble-suck. To bubble-suck, the tadpoles first attach their mouths to the undersurface of the water. They then open their jaws wide and draw a bubble of air into the mouth. What happens next was visible through the skin of some of the tadpoles. The tadpoles empty their lungs into their mouths, where the air mixes with the fresh air of the newly sucked bubble. After the mouth closes, the air bubble is forced down into the lungs, but since the bubble is larger than their lung capacity, a portion of the air remains in the mouth, which is then expelled as a small bubble that floats to the surface. The entire process takes about three tenths of a second.

Bubble-sucking appears to be an adaptation the tadpoles use while they are still small. When they grow large enough and charge the water’s surface, they are able to break the surface tension and “breach-breathe.” The researchers observed bubble-sucking in other species, as well — larval salamanders and even snails. They note that it is likely limited to organisms that can create the suction necessary, therefore arthropods, like insects, cannot bubble-suck.

“As a result of an accidental observation, my research has taken a turn–I never expected to work on these organisms,” Schwenk says. “Before, I thought that tadpoles were uninteresting. But now I find them deeply fascinating.”

Schwenk says this accidental discovery conveys an important point about research in general.

“These frog species are incredibly well-studied and very common,” he says. “Yet, one can learn new things even about the most common animals, which is a good lesson for students, because when getting into research, one can be left with the sense that it has all been done. The fact is, it hasn’t been–we just have to be observant and keep asking questions.”

###

Media Contact
Elaina Hancock
[email protected]

Original Source

https://today.uconn.edu/2020/02/tadpoles-break-tension-bubble-sucking/

Related Journal Article

http://dx.doi.org/10.1098/rspb.2019.2704

Tags: BiologyMarine/Freshwater BiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Worms Uncover the True Crowded Nature of Cells

Worms Uncover the True Crowded Nature of Cells

September 11, 2025

Unraveling Gene Expression Mechanisms in Glioblastoma

September 10, 2025

Transforming Impedance Flow Cytometry Through Adjustable Microchannel Height

September 10, 2025

How Dangerous Bacteria Take Over and Damage Crop Plants

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Worms Uncover the True Crowded Nature of Cells

Boosting Immune Responses via Proximity Labeling

Impact of Teamwork and Competition on STEM Engagement

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.