• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Synthetic tree enhances solar steam generation for harvesting drinking water

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, June 22, 2021 — About 2.2 billion people globally lack reliable access to clean drinking water, according to the United Nations, and the growing impacts of climate change are likely to worsen this reality.

Solar steam generation (SSG) has emerged as a promising renewable energy technology for water harvesting, desalination, and purification that could benefit people who need it most in remote communities, disaster-relief areas, and developing nations. In Applied Physics Letters, by AIP Publishing, Virginia Tech researchers developed a synthetic tree to enhance SSG.

SSG turns solar energy into heat. Water from a storage tank continuously wicks up small, floating porous columns. Once water reaches the layer of photothermal material, it evaporates, and the steam is condensed into drinking water.

One major challenge in scaling up SSG technology is the limit in the capillary force beyond a certain column height, when the water cannot wick fast enough to keep up with the evaporation process. The capillary force, based on the surface tension that causes water to “climb” a porous paper towel, drives the water toward the evaporator.

Inspired by mangrove trees thriving along coastlines, the researchers bypassed this hurdle by creating a synthetic tree to replace the capillary action with transpiration, the process of water movement through a plant and its evaporation from leaves, stems, and flowers. Transpiration can pump water up insulating tubes of any desired height.

In real trees, transpiration begins at the roots, which suck up water through hollow vessels made from xylem tissue. As the water warms, it releases as vapor through pores on the underside of leaves.

The synthetic tree consists of a 19-tube array, covered by a nanoporous ceramic disk, which serves as the leaf. Each plastic tube, imitating the xylem conduits, is 6 centimeters high, just under 2.5 inches, with an inner diameter of 3.175 millimeters, about a tenth of an inch.

The setup enables the evaporating interface to thermally separate from the bulk water in the tank, so the evaporator does not dry out. Water evaporating from the disk is replenished by suction, which continuously pumps more water from a bottom tank up the tube array.

“We expect our tree-based solar steam generator will be of interest for applications in underground water extraction and purification,” author Jonathan Boreyko said. “The ultimate goal is to achieve a suction pressure strong enough to pull ocean water through a salt-excluding filter without requiring a mechanical pump, analogous to how mangrove trees are able to grow in ocean water.”

Future research could focus on fabricating taller trees, adding more leaves to increase the area over which evaporation occurs, and incorporating desalination membranes at the tube inlets to prevent salt buildup.

###

The article, “Synthetic trees for enhanced solar evaporation and water harvesting,” is authored by Ndidi Eyegheleme, Weiwei Shi, Lance H. De Koninck, Julia L. O’Brien, and Jonathan B. Boreyko. The article will appear in Applied Physics Letters on June 22, 2021 (DOI: 10.1063/5.0049904). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0049904.

ABOUT THE JOURNAL

Applied Physics Letters features rapid reports on significant discoveries in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See https://aip.scitation.org/journal/apl.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0049904

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials SciencesClimate ChangedesalinationHydrology/Water ResourcesMarine/Freshwater Biologyrenewable energy technologysolar steam generationsynthetic treewater harvesting
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Persian Nurse Resilience Scale in CPR

October 11, 2025

IMPAcT: Evaluating Systems Change in Public Health

October 11, 2025

New Pipeline Advances Molecular Design Validation in Practice

October 11, 2025

New Proteomic Tool Differentiates Lung Nodules’ Malignancy

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1206 shares
    Share 482 Tweet 301
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    84 shares
    Share 34 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Persian Nurse Resilience Scale in CPR

IMPAcT: Evaluating Systems Change in Public Health

New Pipeline Advances Molecular Design Validation in Practice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.