• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

SwRI granted $3.5 million in awards from US Department of Energy Solar Energy Technologies Office

Bioengineer by Bioengineer
April 1, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two early-stage research projects will advance solar power technologies

IMAGE

Credit: Courtesy of Southwest Research Institute

SAN ANTONIO — April 1, 2019 — Southwest Research Institute has been selected to receive two awards from the U.S. Department of Energy Solar Energy Technologies Office (SETO) to advance concentrating solar-thermal power (CSP) research and development. Both projects will support CSP power cycles that use supercritical carbon dioxide (sCO2) as the working fluid, which has the potential to yield higher thermal efficiencies at a lower cost than steam.

For the first project, valued at $1.5 million, SwRI will collaborate with Vacuum Process Engineering to develop and test a compact dry-cooling heat exchanger for sCO2 power cycles. Dry cooling reduces the water used by power plants but can also reduce the thermal-to-electric conversion efficiency of the power cycle. The SwRI design will efficiently exchange heat between sCO2 and ambient air to conserve water while optimizing the system for peak power cycle performance.

“We’ll also test the performance and reliability of the dry cooling system within a MW-scale sCO2 test loop,” said Dr. Tim Allison, manager of the Rotating Machinery Dynamics Section of the Mechanical Engineering Division. “This concept could reduce the cooler cost from $168 per kilowatt to $95 per kW and reduce cooling power consumption in CSP plants by 14 percent.”

For the second project, valued at $2 million, SwRI will team with EagleBurgmann to develop a high-temperature dry-gas seal for sCO2 power cycle turbomachinery. CSP plants with sCO2 power cycles use mechanical seals to prevent fluid leaks. The increased temperatures and pressures of sCO2 power cycles, however, require novel materials to reach the targeted thermal-to-electric power conversion efficiency of 50 percent.

“By replacing the temperature-sensitive elements with more durable components, the new seals will be able to reach temperatures over 500 degrees C and reach higher efficiencies,” said Dr. Jason Wilkes, SwRI senior research engineer. “This design will also be smaller, which reduces the complexity of the sCO2 turbine design and improves reliability and turbine efficiency.”

“Including these projects, SwRI has supported more than two dozen DOE-funded projects designed to advance sCO2 technology for CSP plants,” said Danny Deffenbaugh, vice president of the Mechanical Engineering Division. “These are the technology building blocks for sCO2 power cycles. We’re eager to see their adoption at some point in the future.”

In 2018, SwRI broke ground on the Supercritical Transformational Electric Power (STEP) pilot plant being built in collaboration with Gas Technology Institute, GE Global Research and the DOE National Energy Technology Laboratory. This first-of-its-kind 10-megawatt sCO2 facility will demonstrate next generation higher-efficiency, lower-cost electric power technology.

SwRI was selected for the new projects as a part of the Energy Department’s effort to invest in research to lower solar electricity costs and support a growing solar energy workforce. SwRI’s awards are two of several CSP projects to develop materials and designs for collectors, power cycles and thermal transport systems that can withstand high temperatures and resist corrosion.

For more information, visit https://www.swri.org/supercritical-carbon-dioxide-power-systems.

###

Media Contact
Maria Stothoff
[email protected]

Original Source

https://www.swri.org/press-release/swri-awards-doe-solar-energy-technologies-office

Tags: Electrical Engineering/ElectronicsEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

November 7, 2025
blank

OSU Develops Revolutionary New Material Advancing Medical Imaging Technology

November 7, 2025

Heat-Resistant Microbes Uncover Molecular Secrets Behind Nature’s Ultimate Recycling System

November 7, 2025

Innovative MOF Membrane Electrolyzer Converts Air and Flue Gas CO2 into Pure Formic Acid, Advancing Carbon Neutrality

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deregulation of NKX3.1 and AURKA in Prostate Cancer

Sphingolipid Metabolism: A Target in Triple-Negative Breast Cancer

TFAP2C Boosts CST1, Promoting Breast Cancer Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.