• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Surprising growth rates discovered in world’s deepest photosynthetic corals

Bioengineer by Bioengineer
June 15, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hawaii Undersea Research Laboratory, University of Hawaii.

New research published in the journal Coral Reefs revealed unexpectedly high growth rates for deep water photosynthetic corals. The study, led by Samuel Kahng, affiliate graduate faculty in the University of Hawai’i at Mānoa School of Ocean and Earth Science and Technology (SOEST), alters the assumption that deep corals living on the brink of darkness grow extremely slowly.

Leptoseris is a group of zooxanthellate coral species which dominate the coral community near the deepest reaches of the sun’s light throughout the Indo-Pacific. Symbiotic microalgae (called zooxanthellae) live within the transparent tissues some coral–giving corals their primary color and providing the machinery for photosynthesis, and in turn, energy.

Deeper in the ocean, less light is available. At the lower end of their depth range, the sunlight available to the Leptoseris species examined in the recent study is less than 0.2% of surface light levels. Less light dictates a general trend of slower growth among species that rely on light for photosynthesis.

Previous studies suggested that photosynthetic corals at the bottom of the ocean’s sunlit layer grow extremely slowly – about 0.04 inch per year for one species of Leptoseris. Until recently, there were very few data on growth rates of corals at depths greater than about 225 feet given the logistical challenges of performing traditional time series growth measurements at these depths.

Kahng, who is also an associate professor at Hawai’i Pacific University, collaborated with SOEST’s Hawai’i Undersea Research Laboratory (HURL), the Waikiki Aquarium, National Taiwan University and Hokkaido University to collected colonies of Leptoseris at depths between 225 and 360 feet in the Au’au Channel, Hawai’i using HURL’s Pisces IV/V submersibles. The research team used uranium-thorium radiometric dating to accurately determine the age of the coral skeletons at multiple points along its radial growth axis – much like one might determine the age of tree rings within a tree trunk.

“Considering the low light environment, the previous assumption was that large corals at these extreme depths should be very old due to extremely slow growth rates,” said Kahng. “Surprisingly, the corals were found to be relatively young with growth rates comparable to that of many non-branching shallow water corals. Growth rates were measured to be between nearly 1 inch per year at 225 feet depth and 0.3 inches per year at 360 feet depth.”

The research team found that these low light, deep water specialists employ an interesting strategy to dominate their preferred habitat. Their thin skeletons and plate-like shape allow for an efficient use of calcium carbonate to maximize surface area for light absorption while using minimal resources to form their skeleton. These thin corals only grow radially outward, not upward, and do not thicken over time like encrusting or massive corals.

“Additionally, the optical geometry of their thin, flat, white skeletons form fine parallel ridges that grow outward from a central origin,” said Kahng. “In some cases, these ridges form convex spaces between them which effectively trap light in reflective chambers and cause light to pass repeatedly through the coral tissue until it is absorbed by the photosynthetic machinery.”

The strategic efficiency of Leptoseris enabling its robust growth rates in such low light has important implications for its ability to compete for space and over-shade slower growing organisms.

“It also illustrates the flexibility of reef building corals and suggests that these communities may be able to develop and recover from mortality events much faster than previously thought,” said Kahng.

###

Media Contact
Marcie Grabowski
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s00338-020-01960-4

Tags: BiologyDevelopmental/Reproductive BiologyEcology/EnvironmentMarine/Freshwater BiologyMicrobiologyOceanographyPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025
blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

Discovering Wuwei Xiaodu Decoction’s Anti-Inflammatory Mechanisms

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.