• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Superior vena cava(SVC)-derived atrial fibrillation attributes clinical and genetic factor

Bioengineer by Bioengineer
October 18, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Life Science and Bioethics Research Center,TMDU

Researchers at Tokyo Medical and Dental University(TMDU) recognize the clinical and genetic factors associated with quivering or irregular heartbeat

Tokyo, Japan – Normally, the heart contracts and relaxes to a regular beat. In atrial fibrillation, the upper chambers of the heart beat irregularly, which affects blood flow into the two lower large chambers. This can lead to stroke, heart failure and other heart-related complications.

Atrial fibrillation triggers were first identified in the pulmonary veins. Hence, the isolation of these veins has become one of the standard treatments for atrial fibrillation. Subsequently, other sites in the heart have been found to trigger and/or drive atrial fibrillation, including the superior vena cava (SVC). Notably, patients with arrhythmogenic SVC have long myocardial sleeves (circularly and longitudinally oriented bundles of heart cells) around the SVC and high amplitude electrical potentials within them.

Although these anatomical features in arrhythmogenic SVC all point to the possibility of genetic factors being involved in atrial fibrillation, this topic has remained largely unstudied. Furthermore, findings of genetic studies previously conducted in people of European ancestry could not be generalized and transferred to those of Asian ancestry.

This critical knowledge gap drove a team of researchers from Tokyo Medical and Dental University(TMDU) in Japan to study the clinical and genetic factors associated with atrial fibrillation in an Asian population. The team discovered two variants of single-nucleotide polymorphism (SNP), a variation in a single nucleotide that occurs at a specific position in the genome, which were significantly associated with SVC arrhythmogenicity.

"We found that among six variants identified in a previous genome-wide association study in Japanese patients, SNPs rs2634073 and rs6584555 were associated with SVC arrhythmogenicity," said Yusuke Ebana, first author of the study that was published in July 2017 in Circulation Journal.

"We also determined that SVC arrhythmogenicity was conditionally dependent on age, body mass index, and left ventricular ejection fraction," Ebana added.

To arrive at that conclusion, the research team conducted a meta-analysis of clinical and genetic factors of 2,170 atrial fibrillation patients with and without SVC arrhythmogenicity across three major hospitals in Japan. Surface electrocardiogram and bipolar intracardiac electrograms were continuously monitored. Additionally, a mapping catheter was placed in the SVC to map the circumferential SVC region using computed tomography (CT) or transesophageal echocardiography as a reference. All the patients were followed-up at least every three months.

"The genes closest to the two SVC variants we found were PITX2 and NEURL1, with the former reported as a left-right determinant in cardiac development," said Tetsushi Furukawa, senior author of the study. "We speculate that the suppression of NEURL1 in SVC patients with the risk genotype could be the cause of arrhythmogenic SVC leading to atrial fibrillation," Furukawa added.

###

Media Contact

Yusuke EBANA
[email protected]

http://www.tmd.ac.jp/english/

Original Source

http://www.tmd.ac.jp/english/press-release/20171018/index.html http://dx.doi.org/10.1253/circj.CJ-17-0350

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.