• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Super productive 3D bioprinter could help speed up drug development

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A 3D printer that rapidly produces large batches of custom biological tissues could help make drug development faster and less costly. Nanoengineers at the University of California San Diego developed the high-throughput bioprinting technology, which 3D prints with record speed–it can produce a 96-well array of living human tissue samples within 30 minutes. Having the ability to rapidly produce such samples could accelerate high-throughput preclinical drug screening and disease modeling, the researchers said.

The process for a pharmaceutical company to develop a new drug can take up to 15 years and cost up to $2.6 billion. It generally begins with screening tens of thousands of drug candidates in test tubes. Successful candidates then get tested in animals, and any that pass this stage move on to clinical trials. With any luck, one of these candidates will make it into the market as an FDA approved drug.

The high-throughput 3D bioprinting technology developed at UC San Diego could accelerate the first steps of this process. It would enable drug developers to rapidly build up large quantities of human tissues on which they could test and weed out drug candidates much earlier.

“With human tissues, you can get better data–real human data–on how a drug will work,” said Shaochen Chen, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering. “Our technology can create these tissues with high-throughput capability, high reproducibility and high precision. This could really help the pharmaceutical industry quickly identify and focus on the most promising drugs.”

The work was published in the journal Biofabrication.

The researchers note that while their technology might not eliminate animal testing, it could minimize failures encountered during that stage.

“What we are developing here are complex 3D cell culture systems that will more closely mimic actual human tissues, and that can hopefully improve the success rate of drug development,” said Shangting You, a postdoctoral researcher in Chen’s lab and co-first author of the study.

The technology rivals other 3D bioprinting methods not only in terms of resolution–it prints lifelike structures with intricate, microscopic features, such as human liver cancer tissues containing blood vessel networks–but also speed. Printing one of these tissue samples takes about 10 seconds with Chen’s technology; printing the same sample would take hours with traditional methods. Also, it has the added benefit of automatically printing samples directly in industrial well plates. This means that samples no longer have to be manually transferred one at a time from the printing platform to the well plates for screening.

“When you’re scaling this up to a 96-well plate, you’re talking about a world of difference in time savings–at least 96 hours using a traditional method plus sample transfer time, versus around 30 minutes total with our technology,” said Chen.

Reproducibility is another key feature of this work. The tissues that Chen’s technology produces are highly organized structures, so they can be easily replicated for industrial scale screening. It’s a different approach than growing organoids for drug screening, explained Chen. “With organoids, you’re mixing different types of cells and letting them to self-organize to form a 3D structure that is not well controlled and can vary from one experiment to another. Thus, they are not reproducible for the same property, structure and function. But with our 3D bioprinting approach, we can specify exactly where to print different cell types, the amounts and the micro-architecture.”

How it works

To print their tissue samples, the researchers first design 3D models of biological structures on a computer. These designs can even come from medical scans, so they can be personalized for a patient’s tissues. The computer then slices the model into 2D snapshots and transfers them to millions of microscopic-sized mirrors. Each mirror is digitally controlled to project patterns of violet light–405 nanometers in wavelength, which is safe for cells–in the form of these snapshots. The light patterns are shined onto a solution containing live cell cultures and light-sensitive polymers that solidify upon exposure to light. The structure is rapidly printed one layer at a time in a continuous fashion, creating a 3D solid polymer scaffold encapsulating live cells that will grow and become biological tissue.

The digitally controlled micromirror array is key to the printer’s high speed. Because it projects entire 2D patterns onto the substrate as it prints layer by layer, it produces 3D structures much faster than other printing methods, which scans each layer line by line using either a nozzle or laser.

“An analogy would be comparing the difference between drawing a shape using a pencil versus a stamp,” said Henry Hwang, a nanoengineering Ph.D. student in Chen’s lab who is also co-first author of the study. “With a pencil, you’d have to draw every single line until you complete the shape. But with a stamp, you mark that entire shape all at once. That’s what the digital micromirror device does in our technology. It’s orders of magnitude difference in speed.”

This recent work builds on the 3D bioprinting technology that Chen’s team invented in 2013. It started out as a platform for creating living biological tissues for regenerative medicine. Past projects include 3D printing liver tissues, blood vessel networks, heart tissues and spinal cord implants, to name a few. In recent years, Chen’s lab has expanded the use of their technology to print coral-inspired structures that marine scientists can use for studying algae growth and for aiding coral reef restoration projects.

Now, the researchers have automated the technology in order to do high-throughput tissue printing. Allegro 3D, Inc., a UC San Diego spin-off company co-founded by Chen and a nanoengineering Ph.D. alumnus from his lab, Wei Zhu, has licensed the technology and recently launched a commercial product.

###

Paper: “High throughput direct 3D bioprinting in multiwell plates.” Co-authors include Xuanyi Ma, Leilani Kwe, Grace Victorine, Natalie Lawrence, Xueyi Wan, Haixu Shen and Wei Zhu.

This work was supported in part by the National Institutes of Health (R01EB021857, R21AR074763, R21HD100132, R33HD090662) and the National Science Foundation (1903933, 1937653).

Media Contact
Liezel Labios
[email protected]

Original Source

https://jacobsschool.ucsd.edu/news/release/3290

Related Journal Article

http://dx.doi.org/10.1088/1758-5090/ab89ca

Tags: 3D bioprintingDrug developmenthigh-throughput screeningNanotechnology/Micromachinespreclinical researchTechnology/Engineering/Computer ScienceTissue Engineering
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.