• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Studying species interactions using remote camera traps

Bioengineer by Bioengineer
February 22, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: www.youtube.com/watch?v=qWQ1SXTONRA


Species are often involved in complex interactions with other species, which can affect their occurrence, abundance, feeding habits and disease transmission. Observing and studying species interactions can be difficult. To circumvent this problem, ecologists increasingly rely on remote devices such as camera traps. In a recent study carried out by researchers from the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) in Germany and University of California, Davis, USA, the scientists explored to what extent camera trap data are suitable to assess subtle species interactions such as avoidance in space and time. The study is published in the international journal Remote Sensing in Ecology and Conservation.

Species interact in numerous ways. In mammals, many interactions are detrimental for at least one of the species, such as cases of predation or disease transmission. In such cases, a species (say, a prey) may choose to avoid encounters with a second species (say, a predator). The researchers focussed on two situations: spatiotemporal avoidance, where the prey avoids its predator simply by going somewhere else, and temporal segregation, where the prey avoids being present in the same location as its predator by being active at times when the predator is not.

The aim of the current study was to create a framework that researchers worldwide could use to detect interactions between species based on their own camera trap data. The scientists used computer simulations to find out how camera-trap data can best be used to study such species interactions. “Identifying which statistical tool is the most sensitive was one of the main goals of our work, as we are aware how challenging it can be to collect large datasets under natural conditions, even with camera traps”, explains Dr Alexandre Courtiol, one of the leading Leibniz-IZW scientists on this project. The proposed approach should allow other scientists to determine which statistical method to use and how many records they need to best understand species interactions for their specific field study. “We show that for many realistic scenarios many records are needed to produce trustworthy results, but I am optimistic: we can achieve this by standardizing data collection and combining datasets from multiple studies. In short, we must collaborate,” Courtiol adds.

###

The journal Remote Sensing in Ecology and Conservation created a short video about this work. A fantastic example of how theoretical science can be shared with a wider audience. Click here to watch the video.

Media Contact
Alexandre Courtiol
[email protected]
49-030-516-8331

Related Journal Article

http://dx.doi.org/10.1002/rse2.107

Tags: BiodiversityBiologyEcology/EnvironmentPopulation BiologySocial/Behavioral ScienceZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

MicroRNA Dynamics in Mouse Liver During Echinococcus Infection

October 25, 2025
Comparing Four Exome Capture Platforms on DNBSEQ

Comparing Four Exome Capture Platforms on DNBSEQ

October 25, 2025

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

October 25, 2025

Avocado Seed Meal Boosts Quail Growth and Meat Quality

October 25, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    193 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Intrahepatic Cholangiocarcinoma: Key Updates from Guidelines

Investigating Rheum wittrockii Seed Surfaces in Kazakhstan

MicroRNA Dynamics in Mouse Liver During Echinococcus Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.