• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study sheds light on why a warmer world may equal a wetter Arctic

Bioengineer by Bioengineer
October 29, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Douglas Levere / University at Buffalo

BUFFALO, N.Y. — The Arctic is warming faster than the rest of the globe, and as it does, it's predicted to get wetter. But why? What mechanisms might drive these changes?

A new study looks to history for answers, examining what happened in the region during a period of warming some 8,000 years ago. The research finds evidence that in this ancient time, western Greenland became more humid, a trend that's often linked to increased precipitation. The study further shows that two different climactic processes may have contributed to this elevated humidity. The processes are:

  • As the Arctic heats up, sea ice melts, exposing regional waters to sun, air and increased evaporation.
  • As the planet warms, humidity increases more in regions closer to the equator. This creates an imbalance in global humidity, and eventually, moist air from lower latitudes is drawn into the drier Arctic.

"We used geologic evidence to determine that both of these processes likely contributed to an increase in humidity in western Greenland when the region warmed rapidly 8,000 years ago," says lead researcher Elizabeth Thomas, PhD, assistant professor of geology in the University at Buffalo College of Arts and Sciences. "As such, both processes could be at play again today, contributing to possible future increases in Arctic humidity, and ultimately, precipitation."

"We don't have long or detailed written records of Arctic precipitation, so we don't fully understand how precipitation might increase in response to warming," she says. It's an important area of study, she adds, because, "precipitation in the Arctic has complex interactions with climate, and it also impacts plant communities and affects how fast glaciers may shrink."

The study was published this month in Geophysical Research Letters by a team of scientists from UB, the University of Massachusetts and Northern Arizona University. The research was funded by the National Science Foundation.

Clues in lakebed mud

To learn about the climate history of western Greenland, scientists analyzed lakebed mud dating back thousands of years. This sediment contains organic matter — such as ancient leaf waxes, and compounds produced by bacteria — that reveal information about the region's climatic past.

As Thomas explains, when it comes to leaf waxes, weather influences the chemical content of these waxes in ways that scientists can trace. Specifically, leaf waxes contain small amounts of a rare form of hydrogen called deuterium, and the concentration of deuterium can go up or down in response to factors such as humidity and precipitation patterns. (One example: In Arctic leaf waxes, deuterium concentrations fluctuate depending on whether precipitation originated locally or from clouds that traveled long distances from low latitudes to arrive in the region).

Chemicals called branched glycerol dialkyl glycerol tetraethers (GDGTs), produced by bacteria, also hold clues about past climate. The composition of these compounds varies depending on the temperature of the surrounding environment at the time they were produced. As a result, scientists can use branched GDGTs to reconstruct prehistoric temperature trends, Thomas says.

These chemical indicators enabled Thomas' team to investigate ancient humidity and precipitation trends in western Greenland as the region warmed some 8,000 years ago. The new research was based on leaf waxes and branched GDGTs found in a sediment sample that the team extracted from the bottom of Sikuiui Lake in western Greenland.

"These chemical indicators are fairly new tools, and they enable us to research ancient climate in ways that were not possible before," Thomas says. "We can use these tools to investigate how humidity fluctuated in a region thousands of years ago, or whether storms in an area originated locally or far away. This is important because understanding what happened in ancient times can provide us with insight into what might happen today as the climate changes."

###

Media Contact

Charlotte Hsu
[email protected]
716-645-4655
@UBNewsSource

http://www.buffalo.edu

Original Source

http://www.buffalo.edu/news/releases/2018/10/055.html http://dx.doi.org/10.1029/2018GL079517

Share12Tweet8Share2ShareShareShare2

Related Posts

Allen Institute Unveils 2025 Next Generation Science Leaders

Allen Institute Unveils 2025 Next Generation Science Leaders

November 4, 2025
MBD Gene Family in Broomcorn Millet: Stress Response Analysis

MBD Gene Family in Broomcorn Millet: Stress Response Analysis

November 4, 2025

Cutting-Edge Molecular Dynamics Simulations Achieve Remarkable Precision in RNA Folding Studies

November 4, 2025

Unveiling Herpesvirus Helicase–Primase and Drug Targets

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing V4+ Stability in Zinc-Ion Batteries

Dr. Harolyn Belcher Honored with 2026 David G. Nichols Health Equity Award by American Pediatric Society

FAU Engineering Secures $1.5M Funding to Establish the Ubicquia Innovation Center for Intelligent Infrastructure

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.