• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study: Rugby-style tackling may have lower force of impact than football-style tackling

Bioengineer by Bioengineer
July 17, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The style of tackling used in rugby may be associated with a lower force of impact than the style used in football, according to a preliminary study of college athletes released today that will be presented at the American Academy of Neurology Sports Concussion Conference in Indianapolis July 26-28, 2019.

“For athletes who participate in a sport that involves a tackle or direct contact, adapting a rugby-style tackle where the players lead with their shoulders, not their heads, could make college sports safer,” said study author Zach Garrett, DHS, of Marshall University in Huntington, W.Va. “A small number of NFL teams have incorporated the rugby-style tackle in an effort to reduce risk of concussion.”

The study measured impact data from 30 male university athletes during their spring practice season. Twenty of the participants were football players who had impact sensors placed in their helmets. Ten of the participants were rugby players who had mouthguards with sensors inserted into them.

At the end of the practice season, the football participants totaled 3,921 impacts over the course of 12 practices, compared to 1,868 impacts over nine practices received by rugby participants. After researchers adjusted for other factors such as false impacts, different sample sizes, and practices, they found that the frequency of impacts was lower for the rugby players than for the football players. The research team also found that the sensors recorded lower impact forces to the head in rugby in comparison to football.

Impact was measured in g-force, which is the measurement of gravity described in units of acceleration. Overall the rugby players had impacts with an average of 21 g-force. Football players had impacts with an average of 63 g-force.

“Further studies with larger numbers of participants are needed to confirm these results and also to determine whether using a rugby-style tackle could effectively reduce the force of impact and potentially reduce the number or severity of concussions in college football,” said Garrett.

###

Learn more about concussion at BrainandLife.org, home of the American Academy of Neurology’s free patient and caregiver magazine focused on the intersection of neurologic disease and brain health. Follow Brain & LifeĀ® on Facebook, Twitter and Instagram.

To learn more about the AAN’s Sports Concussion Guidelines and access resources, visit AAN.com/concussion.

The American Academy of Neurology is the world’s largest association of neurologists and neuroscience professionals, with over 36,000 members. The AAN is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as Alzheimer’s disease, stroke, migraine, multiple sclerosis, concussion, Parkinson’s disease and epilepsy.

For more information about the American Academy of Neurology, visit AAN.com or find us on Facebook, Twitter, Instagram, LinkedIn and YouTube.

Media Contact
Angharad Chester-Jones
[email protected]

Tags: Medicine/HealthPublic HealthSports MedicineSports/Recreation
Share12Tweet8Share2ShareShareShare2

Related Posts

Sexual Dimorphism in UGT Deficiency: New Insights Revealed

September 6, 2025

Dual-Target Fusion Protein Enhances Antiangiogenic Tumor Effects

September 6, 2025

PRMT5 Boosts Heart Failure in Pressure Overload

September 6, 2025

Arabinoxylan Boosts Brain Signaling in Stroke Depression

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sexual Dimorphism in UGT Deficiency: New Insights Revealed

Revolutionary Sandwich Composite Enhances Building Load Capacity

Dual-Target Fusion Protein Enhances Antiangiogenic Tumor Effects

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.