• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study: Reducing energy required to convert CO2 waste into valuable resources

Bioengineer by Bioengineer
April 22, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — Surplus industrial carbon dioxide creates an opportunity to convert waste into a valuable commodity. Excess CO2 can be a feedstock for chemicals typically derived from fossil fuels, but the process is energy-intensive and expensive. University of Illinois chemical engineers have assessed the technical and economic feasibility of a new electrolysis technology that uses a cheap biofuel byproduct to reduce the energy consumption of the waste-to-value process by 53 percent.

The new findings are published in the journal Nature Energy.

Conversion of CO2 to chemicals like ethylene for plastics is possible through a process called electrochemical reduction. Typically, a stream of CO2 gas and a fluid electrolyte move through an electrolysis cell that breaks the CO2 down into molecules like ethylene on the cathode, but it also produces oxygen from water on the anode, the researchers said.

“About 90 percent of the energy required in conventional CO2 reduction is used up by the oxygen-producing, anode side of an electrolysis cell,” said Paul Kenis, a chemical and biomolecular engineering professor, department chair and study co-author. “But there is no big market for the excess oxygen, so 90 percent of the energy is essentially wasted.”

Finding a feed material that reduces the energy to drive the anode reaction could be a strategy for radically reducing the energy requirements of CO2 conversion, according to a recent National Academies Report of which Kenis was a co-author.

The new study proposes glycerol – an organic byproduct of sugar cane biofuel production that requires less energy to oxidize – as an alternative to the energy-intensive oxygen-producing step.

To test if the new electrolysis technique has the potential to push the full CO2 conversion process to a carbon neutral or negative budget, the researchers examined the cost and energy consumption for the production cycle of the waste-to-value process. The four-step cycle includes the capture of industrial CO2 waste gas, the input of electricity, the new

“Our model uses the current electrical grid setup as the source of electricity to make the scenario more realistic,” Kenis said. “Being able to drive CO2 conversion with already-in-place infrastructure – and not relying on the hope of the future grid being powered by 100 percent renewables – while achieving carbon neutrality or negativity could be a holy grail scenario.”

The analysis includes best- and worst-case CO2 emissions and energy consumption scenarios and concludes that the prospects of CO2 reduction, in terms of CO2 emissions and economics, can drastically improve by looking beyond conventional anode reactions.

“The glycerol-based electrolysis reaction shows a lot of promise. However, we will continue to explore other organic waste materials because even when production rises in the wake of increased biofuel production, it still will not be enough to fully support the need,” Kenis said. “The good news is that the chemistry involved is flexible and there are a lot of organic waste products that can do the job.”

Many researchers focus on improving the selectivity and activity of chemical catalysts for CO2 reduction reactions, and that work needs to continue, said Sumit Verma, a former chemical and biomolecular engineering graduate student and study co-author. “Looking beyond oxygen evolution at the anode seems like a win-win situation, as we not only reduce the processes’ energy consumption but also produce a second valuable product stream,” he said.

###

The International Institute for Carbon Neutral Energy Research; Japanese Ministry of Education, Culture, Sports, Science and Technology; Dow Chemical Company; and the Glenn E. and Barbara R. Ullyot graduate fellowship supported this research.

Editor’s notes:

To reach Paul Kenis, call 217-625-0523; kenis@illinois.edu.

The paper “Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption” is available online and from the U. of I. News Bureau. DOI: 10.1038/s41560-019-0374-6

Media Contact
Lois Yoksoulian
leyok@illinois.edu

Original Source

https://news.illinois.edu/view/6367/775596

Related Journal Article

http://dx.doi.org/10.1038/s41560-019-0374-6

Tags: AgricultureBiomedical/Environmental/Chemical EngineeringBusiness/EconomicsChemistry/Physics/Materials SciencesClimate ChangeEnergy/Fuel (non-petroleum)Industrial Engineering/Chemistry
Share12Tweet7Share2ShareShareShare1

Related Posts

Early Universe Galaxies Unveil Hidden Dark Matter Maps

Early Universe Galaxies Unveil Hidden Dark Matter Maps

September 18, 2025
Chicago Quantum Exchange-Led Coalition Reaches Final Stage in NSF Engine Competition

Chicago Quantum Exchange-Led Coalition Reaches Final Stage in NSF Engine Competition

September 18, 2025

“First-ever observation of quantum squeezing in a nanoscale particle”

September 18, 2025

Breaking Through Hydrogen Storage Challenges with a Low-Temperature Hydrogen Battery

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tirzepatide Enhances Blood Sugar Regulation in Adolescents with Type 2 Diabetes Unresponsive to Current Treatments (SURPASS-PEDS Trial)

Emerging Research Links Microplastics to Potential Risks for Bone Health

Early Universe Galaxies Unveil Hidden Dark Matter Maps

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.