• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study points to better medical diagnosis through levitating human blood

Bioengineer by Bioengineer
February 20, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Floating human plasma helps researchers detect diseases like opioid addiction

IMAGE

Credit: UBCO


New research from the UBC’s Okanagan campus, Harvard Medical School and Michigan State University suggests that levitating human plasma may lead to faster, more reliable, portable and simpler disease detection.

The researchers used a stream of electricity that acted like a magnet and separated protein from blood plasma. Plasma is the clear, liquid portion of blood that remains after red blood cells, white blood cells, platelets and other cellular components are removed.

“Human plasma proteins contain information on the occurrence and development of addiction and diseases,” says Sepideh Pakpour, an assistant professor with UBCO’s School of Engineering and one of the authors of the research.

Pakpour is using the proteins to predict opioid dependencies and addictions, but the findings could one day lead to medical diagnoses using the technology.

As plasma proteins are different densities, when separated the proteins levitate at different heights, and therefore become identifiable. An evaluation of these types of proteins and how they group together can paint a picture that identifies whether a patient has the possibility of getting a disease or becoming addicted to drugs like opioids.

“We compared the differences between healthy proteins and diseased proteins to set benchmarks,” says Pakpour. “With this information and the plasma levitation, we were able to accurately detect rare proteins that are only found in individuals with opioid addictions.”

According to Pakpour, the researchers are particularly excited about the possibility of developing a portable and accurate new diagnostic tool for health care practitioners.

“More investigation is required, but our findings are certainly a step forward towards an optical imaging disease detection tool,” she adds.

The five-minute test, uses machine-learning and predictive models, may one day lead to tools that can not only diagnose diseases but also help practitioners prescribe medications that won’t lead to drug dependencies.

The researchers are now evaluating other dependencies and diseases to establish roadmaps for detection.

###

The research is supported by internal grants from the department of anesthesiology at Brigham and Women’s Hospital at Harvard Medical School, and the Precision Health Program at Michigan State University. It was published in Advanced Healthcare Materials.

Media Contact
Patty Wellborn
[email protected]
250-317-0293

Original Source

https://news.ok.ubc.ca/2020/02/20/study-points-to-better-medical-diagnosis-through-levitating-human-blood

Related Journal Article

http://dx.doi.org/10.1002/adhm.201901608

Tags: AddictionBacteriologyCell BiologyDiagnosticsHematologyInfectious/Emerging DiseasesMedicine/HealthMetabolism/Metabolic DiseasesMicrobiologyPharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Spin Squeezing Achieved in Diamond NV Centers

October 2, 2025

Spirituality Eases Occupational Stress in Nurses’ Lives

October 2, 2025

Hashimoto’s Thyroiditis: CA 19-9 and CA 72-4 Levels

October 2, 2025

Danshen Ligustrazine Injection: Impact on Hypertension Biomarkers

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Spin Squeezing Achieved in Diamond NV Centers

Revolutionizing Materials: Long-Distance Remote Epitaxy

Spirituality Eases Occupational Stress in Nurses’ Lives

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.